Fight Finance

CoursesTagsRandomAllRecentScores

The following cash flows are expected:

• 10 yearly payments of $60, with the first payment in 3 years from now (first payment at t=3 and last at t=12). • 1 payment of$400 in 5 years and 6 months (t=5.5) from now.

What is the NPV of the cash flows if the discount rate is 10% given as an effective annual rate?

A 2 year corporate bond yields 3% pa with a coupon rate of 5% pa, paid semi-annually.

Find the effective monthly rate, effective six month rate, and effective annual rate.

$r_\text{eff monthly}$, $r_\text{eff 6 month}$, $r_\text{eff annual}$.

A student won $1m in a lottery. Currently the money is in a bank account which pays interest at 6% pa, given as an APR compounding per month. She plans to spend$20,000 at the beginning of every month from now on (so the first withdrawal will be at t=0). After each withdrawal, she will check how much money is left in the account. When there is less than $500,000 left, she will donate that remaining amount to charity. In how many months will she make her last withdrawal and donate the remainder to charity? In the dividend discount model: $$P_0= \frac{d_1}{r-g}$$ The pronumeral $g$ is supposed to be the: A levered firm has a market value of assets of$10m. Its debt is all comprised of zero-coupon bonds which mature in one year and have a combined face value of $9.9m. Investors are risk-neutral and therefore all debt and equity holders demand the same required return of 10% pa. Therefore the current market capitalisation of debt $(D_0)$ is$9m and equity $(E_0)$ is $1m. A new project presents itself which requires an investment of$2m and will provide a:

• $6.6m cash flow with probability 0.5 in the good state of the world, and a • -$4.4m (notice the negative sign) cash flow with probability 0.5 in the bad state of the world.

The project can be funded using the company's excess cash, no debt or equity raisings are required.

What would be the new market capitalisation of equity $(E_\text{0, with project})$ if shareholders vote to proceed with the project, and therefore should shareholders proceed with the project?

Which of the following statements about the capital and income returns of a 25 year fully amortising loan asset is correct?

Assume that the yield curve (which shows total returns over different maturities) is flat and is not expected to change.

Over the 25 years from issuance to maturity, a fully amortising loan's expected annual effective:

To value a business's assets, the free cash flow of the firm (FCFF, also called CFFA) needs to be calculated. This requires figures from the firm's income statement and balance sheet. For what figures is the balance sheet needed? Note that the balance sheet is sometimes also called the statement of financial position.

Fred owns some BHP shares. He has calculated BHP’s monthly returns for each month in the past 30 years using this formula:

$$r_\text{t monthly}=\ln⁡ \left( \dfrac{P_t}{P_{t-1}} \right)$$

He then took the arithmetic average and found it to be 0.8% per month using this formula:

$$\bar{r}_\text{monthly}= \dfrac{ \displaystyle\sum\limits_{t=1}^T{\left( r_\text{t monthly} \right)} }{T} =0.008=0.8\% \text{ per month}$$

He also found the standard deviation of these monthly returns which was 15% per month:

$$\sigma_\text{monthly} = \dfrac{ \displaystyle\sum\limits_{t=1}^T{\left( \left( r_\text{t monthly} - \bar{r}_\text{monthly} \right)^2 \right)} }{T} =0.15=15\%\text{ per month}$$

Assume that the past historical average return is the true population average of future expected returns and the stock's returns calculated above $(r_\text{t monthly})$ are normally distributed. Which of the below statements about Fred’s BHP shares is NOT correct?

Suppose the yield curve in the USA and Germany is flat and the:

• USD federal funds rate at the Federal Reserve is 1% pa;
• EUR deposit facility at the European Central Bank is -0.4% pa (note the negative sign);
• Spot EUR exchange rate is 1 USD per EUR;
• One year forward EUR exchange rate is 1.011 USD per EUR.

You suspect that there’s an arbitrage opportunity. Which one of the following statements about the potential arbitrage opportunity is NOT correct?

Question 908  effective rate, return types, gross discrete return, return distribution, price gains and returns over time

For an asset's price to double from say $1 to$2 in one year, what must its gross discrete return (GDR) be? If the price now is $P_0$ and the price in one year is $P_1$ then the gross discrete return over the next year is:

$$\text{GDR}_\text{annual} = \dfrac{P_1}{P_0}$$