Fight Finance

Courses  Tags  Random  All  Recent  Scores

Question 16  credit card, APR, effective rate

A credit card offers an interest rate of 18% pa, compounding monthly.

Find the effective monthly rate, effective annual rate and the effective daily rate. Assume that there are 365 days in a year.

All answers are given in the same order:

### r_\text{eff monthly} , r_\text{eff yearly} , r_\text{eff daily} ###



Question 35  bond pricing, zero coupon bond, term structure of interest rates, forward interest rate

A European company just issued two bonds, a

  • 1 year zero coupon bond at a yield of 8% pa, and a
  • 2 year zero coupon bond at a yield of 10% pa.

What is the company's forward rate over the second year (from t=1 to t=2)? Give your answer as an effective annual rate, which is how the above bond yields are quoted.



Question 350  CFFA

Find Sidebar Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

Sidebar Corp
Income Statement for
year ending 30th June 2013
  $m
Sales 405
COGS 100
Depreciation 34
Rent expense 22
Interest expense 39
Taxable Income 210
Taxes at 30% 63
Net income 147
 
Sidebar Corp
Balance Sheet
as at 30th June 2013 2012
  $m $m
Inventory 70 50
Trade debtors 11 16
Rent paid in advance 4 3
PPE 700 680
Total assets 785 749
 
Trade creditors 11 19
Bond liabilities 400 390
Contributed equity 220 220
Retained profits 154 120
Total L and OE 785 749
 

 

Note: All figures are given in millions of dollars ($m).

The cash flow from assets was:



Question 370  capital budgeting, NPV, interest tax shield, WACC, CFFA

Project Data
Project life 2 yrs
Initial investment in equipment $600k
Depreciation of equipment per year $250k
Expected sale price of equipment at end of project $200k
Revenue per job $12k
Variable cost per job $4k
Quantity of jobs per year 120
Fixed costs per year, paid at the end of each year $100k
Interest expense in first year (at t=1) $16.091k
Interest expense in second year (at t=2) $9.711k
Tax rate 30%
Government treasury bond yield 5%
Bank loan debt yield 6%
Levered cost of equity 12.5%
Market portfolio return 10%
Beta of assets 1.24
Beta of levered equity 1.5
Firm's and project's debt-to-equity ratio 25%
 

Notes

  1. The project will require an immediate purchase of $50k of inventory, which will all be sold at cost when the project ends. Current liabilities are negligible so they can be ignored.

Assumptions

  • The debt-to-equity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio. Note that interest expense is different in each year.
  • Thousands are represented by 'k' (kilo).
  • All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
  • All rates and cash flows are nominal. The inflation rate is 2% pa.
  • All rates are given as effective annual rates.
  • The 50% capital gains tax discount is not available since the project is undertaken by a firm, not an individual.

What is the net present value (NPV) of the project?



Question 561  covariance, correlation

The covariance and correlation of two stocks X and Y's annual returns are calculated over a number of years. The units of the returns are in percent per annum ##(\% pa)##.

What are the units of the covariance ##(\sigma_{X,Y})## and correlation ##(\rho_{X,Y})## of returns respectively?

Hint: Visit Wikipedia to understand the difference between percentage points ##(\text{pp})## and percent ##(\%)##.


Question 595  future, continuously compounding rate

A 2-year futures contract on a stock paying a continuous dividend yield of 3% pa was bought when the underlying stock price was $10 and the risk free rate was 10% per annum with continuous compounding. Assume that investors are risk-neutral, so the stock's total required return is the risk free rate.

Find the forward price ##(F_2)## and value of the contract ##(V_0)## initially. Also find the value of the contract in 6 months ##(V_{0.5})## if the stock price rose to $12.



Question 930  arbitrage table, future, no explanation

A non-dividend paying stock has a current price of $20.

The risk free rate is 5% pa given as a continuously compounded rate.

A 2 year futures contract on the stock has a futures price of $24.

You suspect that the futures contract is mis-priced and would like to conduct a risk-free arbitrage that requires zero capital. Which of the following steps about arbitraging the situation is NOT correct?



Question 939  CAPM, systematic and idiosyncratic risk

A common phrase heard in financial markets is that ‘high risk investments deserve high returns’. To make this statement consistent with the Capital Asset Pricing Model (CAPM), a high amount of what specific type of risk deserves a high return?

Investors deserve high returns when they buy assets with high:



Question 950  futures, backwardation

If futures prices are in backwardation, then futures prices (##F_{0,T}##) are than, than or to spot prices (##S_0##)?


Question 967  foreign exchange rate, no explanation

A New Zealand lady wants to calculate how many New Zealand Dollars (NZD) she needs to buy a 1 million Australian dollar (AUD) house in Sydney, Australia. The exchange rate is 0.69 USD per NZD and 0.72 USD per AUD. What is the AUD 1 million equivalent to in NZD?




Copyright © 2014 Keith Woodward