For certain shares, the forward-looking Price-Earnings Ratio (##P_0/EPS_1##) is equal to the inverse of the share's total expected return (##1/r_\text{total}##).

For what shares is this true?

Assume:

- The general accounting definition of 'payout ratio' which is dividends per share (DPS) divided by earnings per share (EPS).
- All cash flows, earnings and rates are real.

You're advising your superstar client 40-cent who is weighing up buying a private jet or a luxury yacht. 40-cent is just as happy with either, but he wants to go with the more cost-effective option. These are the cash flows of the two options:

- The private jet can be bought for $6m now, which will cost $12,000 per month in fuel, piloting and airport costs, payable at the end of each month. The jet will last for
**12**years. - Or the luxury yacht can be bought for $4m now, which will cost $20,000 per month in fuel, crew and berthing costs, payable at the end of each month. The yacht will last for
**20**years.

What's unusual about 40-cent is that he is so famous that he will actually be able to sell his jet or yacht for the same price as it was bought since the next generation of superstar musicians will buy it from him as a status symbol.

Bank interest rates are 10% pa, given as an effective annual rate. You can assume that 40-cent will live for another 60 years and that when the jet or yacht's life is at an end, he will buy a new one with the same details as above.

Would you advise 40-cent to buy the or the ?

Note that the effective monthly rate is ##r_\text{eff monthly}=(1+0.1)^{1/12}-1=0.00797414##

**Question 497** income and capital returns, DDM, ex dividend date

A stock will pay you a dividend of $**10** **tonight** if you buy it **today**. Thereafter the annual dividend is expected to grow by **5**% pa, so the next dividend after the $10 one tonight will be $10.50 in one year, then in two years it will be $11.025 and so on. The stock's required return is **10**% pa.

What is the stock price today and what do you expect the stock price to be tomorrow, approximately?

**Question 721** mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

Fred owns some Commonwealth Bank (CBA) shares. He has calculated CBA’s monthly returns for each month in the past 20 years using this formula:

###r_\text{t monthly}=\ln \left( \dfrac{P_t}{P_{t-1}} \right)###He then took the arithmetic average and found it to be **1**% per month using this formula:

He also found the standard deviation of these monthly returns which was **5**% per month:

Which of the below statements about Fred’s CBA shares is **NOT** correct? Assume that the past historical average return is the true population average of future expected returns.

**Question 730** DDM, income and capital returns, no explanation

A stock’s current price is $**1**. Its expected total return is **10**% pa and its long term expected capital return is **4**% pa. It pays an annual dividend and the next one will be paid in **one year**. All rates are given as effective annual rates. The dividend discount model is thought to be a suitable model for the stock. Ignore taxes. Which of the following statements about the stock is **NOT** correct?

**Question 767** idiom, corporate financial decision theory, no explanation

The sayings "Don't cry over spilt milk", "Don't regret the things that you can't change" and "What's done is done" are most closely related to which financial concept?

Calculate Australia’s GDP over the 2016 calendar year using the below table:

Australian Gross Domestic Product Components |
||||

A$ billion, 2016 Calendar Year from 1 Jan 2016 to 31 Dec 2016 inclusive | ||||

Consumption | Investment | Government spending | Exports | Imports |

971 | 421 | 320 | 328 | 344 |

Source: ABS 5206.0 Australian National Accounts: National Income, Expenditure and Product. Table 3. Expenditure on Gross Domestic Product (GDP), Current prices.

Australia’s GDP was:

You just spent $**1,000** on your credit card. The interest rate is **24**% pa compounding **monthly**. Assume that your credit card account has no fees and no minimum monthly repayment.

If you can't make any interest or principal payments on your credit card debt over the next year, how much will you owe **one year** from now?

Suppose the current Australian exchange rate is 0.8 USD per AUD.

If you think that the AUD will appreciate against the USD, contrary to the rest of the market, how could you profit? Right now you should:

The required return of a building project is **10**%, given as an effective annual rate. Assume that the cash flows shown in the table are paid all at once at the given point in time.

The building firm is just about to start the project and the client has signed the contract. Initially the firm will pay $100 to the sub-contractors to carry out the work and then will receive an $11 payment from the client in one year and $121 when the project is finished in 2 years. Ignore credit risk.

But the building company is considering selling the project to a competitor at different points in time and is pondering the minimum price that they should sell it for.

Project Cash Flows | |

Time (yrs) | Cash flow ($) |

0 | -100 |

1 | 11 |

2 | 121 |

Which of the below statements is **NOT** correct? The project is worth: