A project has the following cash flows. Normally cash flows are assumed to happen at the given time. But here, assume that the cash flows are received smoothly over the year. So the $250 at time 2 is actually earned smoothly from t=1 to t=2:

Project Cash Flows | |

Time (yrs) | Cash flow ($) |

0 | -400 |

1 | 200 |

2 | 250 |

What is the payback period of the project in years?

Find UniBar Corp's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

UniBar Corp | ||

Income Statement for | ||

year ending 30th June 2013 | ||

$m | ||

Sales | 80 | |

COGS | 40 | |

Operating expense | 15 | |

Depreciation | 10 | |

Interest expense | 5 | |

Income before tax | 10 | |

Tax at 30% | 3 | |

Net income | 7 | |

UniBar Corp | ||

Balance Sheet | ||

as at 30th June | 2013 | 2012 |

$m | $m | |

Assets | ||

Current assets | 120 | 90 |

PPE | ||

Cost | 360 | 320 |

Accumul. depr. | 40 | 30 |

Carrying amount | 320 | 290 |

Total assets | 440 | 380 |

Liabilities | ||

Current liabilities | 110 | 60 |

Non-current liabilities | 190 | 180 |

Owners' equity | ||

Retained earnings | 95 | 95 |

Contributed equity | 45 | 45 |

Total L and OE | 440 | 380 |

Note: all figures are given in millions of dollars ($m).

A trader **sells** one crude oil **futures** contract on the CME expiring in one year with a locked-in futures price of $38.94 per barrel. The crude oil spot price is $40.33. If the trader doesn’t close out her contract before expiry then in one year she will have the:

A stock has a beta of **1.5**. The market's expected total return is **10**% pa and the risk free rate is **5**% pa, both given as effective annual rates.

In the last 5 minutes, bad economic news was released showing a higher chance of recession. Over this time the share market **fell** by **1**%. The risk free rate was unchanged.

What do you think was the stock's historical return over the last 5 minutes, given as an effective 5 minute rate?

**Question 758** time calculation, fully amortising loan, no explanation

**Two** years ago you entered into a **fully amortising** home loan with a principal of $**1,000,000**, an interest rate of **6**% pa compounding monthly with a term of **25** years.

Then interest rates suddenly fall to **4.5**% pa (t=0), but you continue to pay the same monthly home loan payments as you did before. How long will it now take to pay off your home loan? Measure the time taken to pay off the home loan from the current time which is 2 years after the home loan was first entered into.

Assume that the lower interest rate was given to you immediately after the loan repayment at the end of year 2, which was the 24th payment since the loan was granted. Also assume that rates were and are expected to remain constant.

**Question 792** mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate, log-normal distribution, confidence interval

A risk manager has identified that their investment fund’s continuously compounded portfolio returns are normally distributed with a mean of **10**% pa and a standard deviation of **40**% pa. The fund’s portfolio is currently valued at $**1** million. Assume that there is no estimation error in the above figures. To simplify your calculations, all answers below use **2.33** as an approximation for the normal inverse cumulative density function at 99%. All answers are rounded to the nearest dollar. Assume one month is 1/12 of a year. Which of the following statements is **NOT** correct?

You intend to use futures on oil to hedge the risk of purchasing oil. There is no cross-hedging risk. Oil pays no dividends but it’s costly to store. Which of the following statements about basis risk in this scenario is **NOT** correct?

A **one** year European-style **call** option has a strike price of $**4**. The option's underlying stock pays no dividends and currently trades at $**5**. The risk-free interest rate is **10**% pa continuously compounded. Use a **single** step binomial tree to calculate the option price, assuming that the price could rise to $**8** ##(u = 1.6)## or fall to $**3.125** ##(d = 1/1.6)## in one year. The call option price now is:

**Question 964** monetary policy, impossible trinity, foreign exchange rate

It’s often thought that the ideal currency or exchange rate regime would:

1. Be **fixed** against the USD;

2. Be **convertible** to and from USD for traders and investors so there are open goods, services and capital markets, and;

3. Allow **independent** monetary policy set by the country’s central bank, independent of the US central bank. So the country can set its own interest rate independent of the US Federal Reserve’s USD interest rate.

However, not all of these characteristics can be achieved. One must be sacrificed. This is the 'impossible trinity'.

Which of the following exchange rate regimes sacrifices **independent monetary policy**?