Fight Finance

Courses  Tags  Random  All  Recent  Scores

Question 18  DDM, income and capital returns

The following equation is the Dividend Discount Model, also known as the 'Gordon Growth Model' or the 'Perpetuity with growth' equation.

### p_{0} = \frac{c_1}{r_{\text{eff}} - g_{\text{eff}}} ###

What is the discount rate '## r_\text{eff} ##' in this equation?



Question 65  annuity with growth, needs refinement

Which of the below formulas gives the present value of an annuity with growth?


Hint: The equation of a perpetuity without growth is: ###V_\text{0, perp without growth} = \frac{C_\text{1}}{r}###

The formula for the present value of an annuity without growth is derived from the formula for a perpetuity without growth.

The idea is than an annuity with T payments from t=1 to T inclusive is equivalent to a perpetuity starting at t=1 with fixed positive cash flows, plus a perpetuity starting T periods later (t=T+1) with fixed negative cash flows. The positive and negative cash flows after time period T cancel each other out, leaving the positive cash flows between t=1 to T, which is the annuity.

###\begin{aligned} V_\text{0, annuity} &= V_\text{0, perp without growth from t=1} - V_\text{0, perp without growth from t=T+1} \\ &= \dfrac{C_\text{1}}{r} - \dfrac{ \left( \dfrac{C_\text{T+1}}{r} \right) }{(1+r)^T} \\ &= \dfrac{C_\text{1}}{r} - \dfrac{ \left( \dfrac{C_\text{1}}{r} \right) }{(1+r)^T} \\ &= \dfrac{C_\text{1}}{r}\left(1 - \dfrac{1}{(1+r)^T}\right) \\ \end{aligned}###

The equation of a perpetuity with growth is:

###V_\text{0, perp with growth} = \dfrac{C_\text{1}}{r-g}###

Question 75  WACC, CAPM

A company has:

  • 50 million shares outstanding.
  • The market price of one share is currently $6.
  • The risk-free rate is 5% and the market return is 10%.
  • Market analysts believe that the company's ordinary shares have a beta of 2.
  • The company has 1 million preferred stock which have a face (or par) value of $100 and pay a constant dividend of 10% of par. They currently trade for $80 each.
  • The company's debentures are publicly traded and their market price is equal to 90% of their face value.
  • The debentures have a total face value of $60,000,000 and the current yield to maturity of corporate debentures is 10% per annum. The corporate tax rate is 30%.

What is the company's after-tax weighted average cost of capital (WACC)? Assume a classical tax system.



Question 141  time calculation, APR, effective rate

You're trying to save enough money to buy your first car which costs $2,500. You can save $100 at the end of each month starting from now. You currently have no money at all. You just opened a bank account with an interest rate of 6% pa payable monthly.

How many months will it take to save enough money to buy the car? Assume that the price of the car will stay the same over time.



Question 202  DDM, payout policy

Currently, a mining company has a share price of $6 and pays constant annual dividends of $0.50. The next dividend will be paid in 1 year. Suddenly and unexpectedly the mining company announces that due to higher than expected profits, all of these windfall profits will be paid as a special dividend of $0.30 in 1 year.

If investors believe that the windfall profits and dividend is a one-off event, what will be the new share price? If investors believe that the additional dividend is actually permanent and will continue to be paid, what will be the new share price? Assume that the required return on equity is unchanged. Choose from the following, where the first share price includes the one-off increase in earnings and dividends for the first year only ##(P_\text{0 one-off})## , and the second assumes that the increase is permanent ##(P_\text{0 permanent})##:


Note: When a firm makes excess profits they sometimes pay them out as special dividends. Special dividends are just like ordinary dividends but they are one-off and investors do not expect them to continue, unlike ordinary dividends which are expected to persist.


Question 329  DDM, expected and historical returns

In the dividend discount model:

### P_0= \frac{d_1}{r-g} ###

The pronumeral ##g## is supposed to be the:



Question 351  CFFA

Over the next year, the management of an unlevered company plans to:

  • Achieve firm free cash flow (FFCF or CFFA) of $1m.
  • Pay dividends of $1.8m
  • Complete a $1.3m share buy-back.
  • Spend $0.8m on new buildings without buying or selling any other fixed assets. This capital expenditure is included in the CFFA figure quoted above.

Assume that:

  • All amounts are received and paid at the end of the year so you can ignore the time value of money.
  • The firm has sufficient retained profits to pay the dividend and complete the buy back.
  • The firm plans to run a very tight ship, with no excess cash above operating requirements currently or over the next year.

How much new equity financing will the company need? In other words, what is the value of new shares that will need to be issued?



Question 793  option, hedging, delta hedging, gamma hedging, gamma, Black-Scholes-Merton option pricing

A bank buys 1000 European put options on a $10 non-dividend paying stock at a strike of $12. The bank wishes to hedge this exposure. The bank can trade the underlying stocks and European call options with a strike price of 7 on the same stock with the same maturity. Details of the call and put options are given in the table below. Each call and put option is on a single stock.

European Options on a Non-dividend Paying Stock
Description Symbol Put Values Call Values
Spot price ($) ##S_0## 10 10
Strike price ($) ##K_T## 12 7
Risk free cont. comp. rate (pa) ##r## 0.05 0.05
Standard deviation of the stock's cont. comp. returns (pa) ##\sigma## 0.4 0.4
Option maturity (years) ##T## 1 1
Option price ($) ##p_0## or ##c_0## 2.495350486 3.601466138
##N[d_1]## ##\partial c/\partial S##   0.888138405
##N[d_2]## ##N[d_2]##   0.792946442
##-N[-d_1]## ##\partial p/\partial S## -0.552034778  
##N[-d_2]## ##N[-d_2]## 0.207053558  
Gamma ##\Gamma = \partial^2 c/\partial S^2## or ##\partial^2 p/\partial S^2## 0.098885989 0.047577422
Theta ##\Theta = \partial c/\partial T## or ##\partial p/\partial T## 0.348152078 0.672379961
 

 

Which of the following statements is NOT correct?



Question 829  option, future, delta, gamma, theta, no explanation

Below are some statements about futures and European-style options on non-dividend paying stocks. Assume that the risk free rate is always positive. Which of these statements is NOT correct? All other things remaining equal:



Question 854  speculation motive for keeping money, no explanation

What is the speculation motive for keeping money? The speculation motive encourages people to keep money available: