**Question 22** NPV, perpetuity with growth, effective rate, effective rate conversion

What is the NPV of the following series of cash flows when the discount rate is 10% given as an effective annual rate?

The first payment of $90 is in 3 years, followed by payments every 6 months in perpetuity after that which shrink by 3% every 6 months. That is, the growth rate every 6 months is actually negative 3%, given as an effective 6 month rate. So the payment at ## t=3.5 ## years will be ## 90(1-0.03)^1=87.3 ##, and so on.

The following equation is the Dividend Discount Model, also known as the 'Gordon Growth Model' or the 'Perpetuity with growth' equation.

### p_0 = \frac{d_1}{r - g} ###

Which expression is **NOT** equal to the expected dividend yield?

There are many different ways to value a firm's assets. Which of the following will **NOT** give the correct market value of a levered firm's assets ##(V_L)##? Assume that:

- The firm is financed by listed common stock and vanilla annual fixed coupon bonds, which are both traded in a liquid market.
- The bonds' yield is equal to the coupon rate, so the bonds are issued at par. The yield curve is flat and yields are not expected to change. When bonds mature they will be rolled over by issuing the same number of new bonds with the same expected yield and coupon rate, and so on forever.
- Tax rates on the dividends and capital gains received by investors are equal, and capital gains tax is paid every year, even on unrealised gains regardless of when the asset is sold.
- There is no re-investment of the firm's cash back into the business. All of the firm's excess cash flow is paid out as dividends so real growth is zero.
- The firm operates in a mature industry with zero real growth.
- All cash flows and rates in the below equations are real (not nominal) and are expected to be stable forever. Therefore the perpetuity equation with no growth is suitable for valuation.

Where:

###r_\text{WACC before tax} = r_D.\frac{D}{V_L} + r_{EL}.\frac{E_L}{V_L} = \text{Weighted average cost of capital before tax}### ###r_\text{WACC after tax} = r_D.(1-t_c).\frac{D}{V_L} + r_{EL}.\frac{E_L}{V_L} = \text{Weighted average cost of capital after tax}### ###NI_L=(Rev-COGS-FC-Depr-\mathbf{IntExp}).(1-t_c) = \text{Net Income Levered}### ###CFFA_L=NI_L+Depr-CapEx - \varDelta NWC+\mathbf{IntExp} = \text{Cash Flow From Assets Levered}### ###NI_U=(Rev-COGS-FC-Depr).(1-t_c) = \text{Net Income Unlevered}### ###CFFA_U=NI_U+Depr-CapEx - \varDelta NWC= \text{Cash Flow From Assets Unlevered}###A mature firm has constant expected future earnings and dividends. Both amounts are equal. So earnings and dividends are expected to be equal and unchanging.

Which of the following statements is **NOT** correct?

**Question 589** future, contango, market efficiency

In general, stock prices tend to rise. What does this mean for futures on equity?

**Question 703** utility, risk aversion, utility function, gamble

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Each person has $500 of initial wealth. A coin toss game is offered to each person at a casino where the player can win or lose $500. Each player can flip a coin and if they flip heads, they receive $500. If they flip tails then they will lose $500. Which of the following statements is **NOT** correct?

Use the below information to value a levered company with annual perpetual cash flows from assets that grow. The next cash flow will be generated in one year from now, so a perpetuity can be used to value this firm. Note that ‘k’ means kilo or 1,000. So the $30k is $30,000.

Data on a Levered Firm with Perpetual Cash Flows | ||

Item abbreviation | Value | Item full name |

##\text{CFFA}_\text{U}## | $30k | Cash flow from assets excluding interest tax shields (unlevered) |

##g## | 1.5% pa | Growth rate of cash flow from assets, levered and unlevered |

##r_\text{D}## | 4% pa | Cost of debt |

##r_\text{EL}## | 16.3% pa | Cost of levered equity |

##D/V_L## | 80% pa | Debt to assets ratio, where the asset value includes tax shields |

##t_c## | 30% | Corporate tax rate |

Which of the following statements is **NOT** correct?

**Question 904** option, Black-Scholes-Merton option pricing, option on future on stock index

A **six** month European-style **call** option on six month S&P500 index **futures** has a strike price of **2800** points.

The six month **futures** price on the S&P500 index is currently at **2740.805274** points. The futures underlie the call option.

The S&P500 stock index currently trades at **2700** points. The stock index underlies the futures. The stock index's standard deviation of continuously compounded returns is **25**% pa.

The risk-free interest rate is **5**% pa continuously compounded.

Use the Black-Scholes-Merton formula to calculate the option price. The call option price now is: