Fight Finance

CoursesTagsRandomAllRecentScores

The security market line (SML) shows the relationship between beta and expected return.

Investment projects that plot on the SML would have:

There are many ways to calculate a firm's free cash flow (FFCF), also called cash flow from assets (CFFA). Some include the annual interest tax shield in the cash flow and some do not.

Which of the below FFCF formulas include the interest tax shield in the cash flow?

$$(1) \quad FFCF=NI + Depr - CapEx -ΔNWC + IntExp$$ $$(2) \quad FFCF=NI + Depr - CapEx -ΔNWC + IntExp.(1-t_c)$$ $$(3) \quad FFCF=EBIT.(1-t_c )+ Depr- CapEx -ΔNWC+IntExp.t_c$$ $$(4) \quad FFCF=EBIT.(1-t_c) + Depr- CapEx -ΔNWC$$ $$(5) \quad FFCF=EBITDA.(1-t_c )+Depr.t_c- CapEx -ΔNWC+IntExp.t_c$$ $$(6) \quad FFCF=EBITDA.(1-t_c )+Depr.t_c- CapEx -ΔNWC$$ $$(7) \quad FFCF=EBIT-Tax + Depr - CapEx -ΔNWC$$ $$(8) \quad FFCF=EBIT-Tax + Depr - CapEx -ΔNWC-IntExp.t_c$$ $$(9) \quad FFCF=EBITDA-Tax - CapEx -ΔNWC$$ $$(10) \quad FFCF=EBITDA-Tax - CapEx -ΔNWC-IntExp.t_c$$

The formulas for net income (NI also called earnings), EBIT and EBITDA are given below. Assume that depreciation and amortisation are both represented by 'Depr' and that 'FC' represents fixed costs such as rent.

$$NI=(Rev - COGS - Depr - FC - IntExp).(1-t_c )$$ $$EBIT=Rev - COGS - FC-Depr$$ $$EBITDA=Rev - COGS - FC$$ $$Tax =(Rev - COGS - Depr - FC - IntExp).t_c= \dfrac{NI.t_c}{1-t_c}$$

You just bought a house worth $1,000,000. You financed it with an$800,000 mortgage loan and a deposit of $200,000. You estimate that: • The house has a beta of 1; • The mortgage loan has a beta of 0.2. What is the beta of the equity (the$200,000 deposit) that you have in your house?

Also, if the risk free rate is 5% pa and the market portfolio's return is 10% pa, what is the expected return on equity in your house? Ignore taxes, assume that all cash flows (interest payments and rent) were paid and received at the end of the year, and all rates are effective annual rates.

The Australian dollar's value was:

• 1.4875 USD per AUD on 31 August 1974.
• 0.4890 USD per AUD on 31 March 2001.

Did the Australian dollar or against the US dollar between these dates?

An effective semi-annual return of 5% $(r_\text{eff 6mth})$ is equivalent to an effective annual return $(r_\text{eff annual})$ of:

A real estate agent says that the price of a house in Sydney Australia is approximately equal to the gross weekly rent times 1000.

What type of valuation method is the real estate agent using?

How much more can you borrow using an interest-only loan compared to a 25-year fully amortising loan if interest rates are 4% pa compounding per month and are not expected to change? If it makes it easier, assume that you can afford to pay $2,000 per month on either loan. Express your answer as a proportional increase using the following formula: $$\text{Proportional Increase} = \dfrac{V_\text{0,interest only}}{V_\text{0,fully amortising}} - 1$$ An investor bought a 5 year government bond with a 2% pa coupon rate at par. Coupons are paid semi-annually. The face value is$100.

Calculate the bond's new price 8 months later after yields have increased to 3% pa. Note that both yields are given as APR's compounding semi-annually. Assume that the yield curve was flat before the change in yields, and remained flat afterwards as well.

Question 909  money market, bills

By convention, money market securities' yields are always quoted as:

A stock's returns are normally distributed with a mean of 10% pa and a standard deviation of 20 percentage points pa. What is the 95% confidence interval of returns over the next year? Note that the Z-statistic corresponding to a one-tail:

• 90% normal probability density function is 1.282.
• 95% normal probability density function is 1.645.
• 97.5% normal probability density function is 1.960.

The 95% confidence interval of annual returns is between: