Suppose you had $100 in a savings account and the interest rate was 2% per year.
After 5 years, how much do you think you would have in the account if you left the money to grow?
Question 278 inflation, real and nominal returns and cash flows
Imagine that the interest rate on your savings account was 1% per year and inflation was 2% per year.
Jan asks you for a loan. He wants $100 now and offers to pay you back $120 in 1 year. You can borrow and lend from the bank at an interest rate of 10% pa, given as an effective annual rate.
Ignore credit risk. Remember:
### V_0 = \frac{V_t}{(1+r_\text{eff})^t} ###
Katya offers to pay you $10 at the end of every year for the next 5 years (t=1,2,3,4,5) if you pay her $50 now (t=0). You can borrow and lend from the bank at an interest rate of 10% pa, given as an effective annual rate.
Ignore credit risk.
For a price of $13, Carla will sell you a share which will pay a dividend of $1 in one year and every year after that forever. The required return of the stock is 10% pa.
For a price of $6, Carlos will sell you a share which will pay a dividend of $1 in one year and every year after that forever. The required return of the stock is 10% pa.
For a price of $102, Andrea will sell you a share which just paid a dividend of $10 yesterday, and is expected to pay dividends every year forever, growing at a rate of 5% pa.
So the next dividend will be ##10(1+0.05)^1=$10.50## in one year from now, and the year after it will be ##10(1+0.05)^2=11.025## and so on.
The required return of the stock is 15% pa.
The required return of a project is 10%, given as an effective annual rate. Assume that the cash flows shown in the table are paid all at once at the given point in time.
What is the Net Present Value (NPV) of the project?
Project Cash Flows  
Time (yrs)  Cash flow ($) 
0  100 
1  11 
2  121 
A project to build a toll road will take 3 years to complete, costing three payments of $50 million, paid at the start of each year (at times 0, 1, and 2).
After completion, the toll road will yield a constant $10 million at the end of each year forever with no costs. So the first payment will be at t=4.
The required return of the project is 10% pa given as an effective nominal rate. All cash flows are nominal.
What is the payback period?
A project's NPV is positive. Select the most correct statement:
Question 542 price gains and returns over time, IRR, NPV, income and capital returns, effective return
For an asset price to double every 10 years, what must be the expected future capital return, given as an effective annual rate?
Question 543 price gains and returns over time, IRR, NPV, income and capital returns, effective return
For an asset price to triple every 5 years, what must be the expected future capital return, given as an effective annual rate?
You have $100,000 in the bank. The bank pays interest at 10% pa, given as an effective annual rate.
You wish to consume twice as much now (t=0) as in one year (t=1) and have nothing left in the bank at the end.
How much can you consume at time zero and one? The answer choices are given in the same order.
You have $100,000 in the bank. The bank pays interest at 10% pa, given as an effective annual rate.
You wish to consume half as much now (t=0) as in one year (t=1) and have nothing left in the bank at the end.
How much can you consume at time zero and one? The answer choices are given in the same order.
A firm is considering a business project which costs $10m now and is expected to pay a single cash flow of $12.1m in two years.
Assume that the initial $10m cost is funded using the firm's existing cash so no new equity or debt will be raised. The cost of capital is 10% pa.
Which of the following statements about net present value (NPV), internal rate of return (IRR) and payback period is NOT correct?
For a price of $129, Joanne will sell you a share which is expected to pay a $30 dividend in one year, and a $10 dividend every year after that forever. So the stock's dividends will be $30 at t=1, $10 at t=2, $10 at t=3, and $10 forever onwards.
The required return of the stock is 10% pa.
Your friend wants to borrow $1,000 and offers to pay you back $100 in 6 months, with more $100 payments at the end of every month for another 11 months. So there will be twelve $100 payments in total. She says that 12 payments of $100 equals $1,200 so she's being generous.
If interest rates are 12% pa, given as an APR compounding monthly, what is the Net Present Value (NPV) of your friend's deal?
This annuity formula ##\dfrac{C_1}{r}\left(1\dfrac{1}{(1+r)^3} \right)## is equivalent to which of the following formulas? Note the 3.
In the below formulas, ##C_t## is a cash flow at time t. All of the cash flows are equal, but paid at different times.
Your friend overheard that you need some cash and asks if you would like to borrow some money. She can lend you $5,000 now (t=0), and in return she wants you to pay her back $1,000 in two years (t=2) and every year after that for the next 5 years, so there will be 6 payments of $1,000 from t=2 to t=7 inclusive.
What is the net present value (NPV) of borrowing from your friend?
Assume that banks loan funds at interest rates of 10% pa, given as an effective annual rate.
Some countries' interest rates are so low that they're zero.
If interest rates are 0% pa and are expected to stay at that level for the foreseeable future, what is the most that you would be prepared to pay a bank now if it offered to pay you $10 at the end of every year for the next 5 years?
In other words, what is the present value of five $10 payments at time 1, 2, 3, 4 and 5 if interest rates are 0% pa?
Discounted cash flow (DCF) valuation prices assets by finding the present value of the asset's future cash flows. The single cash flow, annuity, and perpetuity equations are very useful for this.
Which of the following equations is the 'perpetuity with growth' equation?
A stock is expected to pay its next dividend of $1 in one year. Future annual dividends are expected to grow by 2% pa. So the first dividend of $1 will be in one year, the year after that $1.02 (=1*(1+0.02)^1), and a year later $1.0404 (=1*(1+0.02)^2) and so on forever.
Its required total return is 10% pa. The total required return and growth rate of dividends are given as effective annual rates.
Calculate the current stock price.
A stock just paid a dividend of $1. Future annual dividends are expected to grow by 2% pa. The next dividend of $1.02 (=1*(1+0.02)^1) will be in one year, and the year after that the dividend will be $1.0404 (=1*(1+0.02)^2), and so on forever.
Its required total return is 10% pa. The total required return and growth rate of dividends are given as effective annual rates.
Calculate the current stock price.
A stock is just about to pay a dividend of $1 tonight. Future annual dividends are expected to grow by 2% pa. The next dividend of $1 will be paid tonight, and the year after that the dividend will be $1.02 (=1*(1+0.02)^1), and a year later 1.0404 (=1*(1+0.04)^2) and so on forever.
Its required total return is 10% pa. The total required return and growth rate of dividends are given as effective annual rates.
Calculate the current stock price.
For a price of $1040, Camille will sell you a share which just paid a dividend of $100, and is expected to pay dividends every year forever, growing at a rate of 5% pa.
So the next dividend will be ##100(1+0.05)^1=$105.00##, and the year after it will be ##100(1+0.05)^2=110.25## and so on.
The required return of the stock is 15% pa.
The perpetuity with growth formula, also known as the dividend discount model (DDM) or Gordon growth model, is appropriate for valuing a company's shares. ##P_0## is the current share price, ##C_1## is next year's expected dividend, ##r## is the total required return and ##g## is the expected growth rate of the dividend.
###P_0=\dfrac{C_1}{rg}###
The below graph shows the expected future price path of the company's shares. Which of the following statements about the graph is NOT correct?
The following equation is the Dividend Discount Model, also known as the 'Gordon Growth Model' or the 'Perpetuity with growth' equation.
###P_0=\frac{d_1}{rg}###
A stock pays dividends annually. It just paid a dividend, but the next dividend (##d_1##) will be paid in one year.
According to the DDM, what is the correct formula for the expected price of the stock in 2.5 years?
The following equation is the Dividend Discount Model, also known as the 'Gordon Growth Model' or the 'Perpetuity with growth' equation.
### P_{0} = \frac{C_1}{r_{\text{eff}}  g_{\text{eff}}} ###
What would you call the expression ## C_1/P_0 ##?
The following is the Dividend Discount Model (DDM) used to price stocks:
###P_0=\dfrac{C_1}{rg}###
If the assumptions of the DDM hold, which one of the following statements is NOT correct? The long term expected:
Question 497 income and capital returns, DDM, ex dividend date
A stock will pay you a dividend of $10 tonight if you buy it today. Thereafter the annual dividend is expected to grow by 5% pa, so the next dividend after the $10 one tonight will be $10.50 in one year, then in two years it will be $11.025 and so on. The stock's required return is 10% pa.
What is the stock price today and what do you expect the stock price to be tomorrow, approximately?
In the dividend discount model:
###P_0 = \dfrac{C_1}{rg}###
The return ##r## is supposed to be the:
A stock pays annual dividends which are expected to continue forever. It just paid a dividend of $10. The growth rate in the dividend is 2% pa. You estimate that the stock's required return is 10% pa. Both the discount rate and growth rate are given as effective annual rates. Using the dividend discount model, what will be the share price?
A stock is expected to pay the following dividends:
Cash Flows of a Stock  
Time (yrs)  0  1  2  3  4  ... 
Dividend ($)  0.00  1.00  1.05  1.10  1.15  ... 
After year 4, the annual dividend will grow in perpetuity at 5% pa, so;
 the dividend at t=5 will be $1.15(1+0.05),
 the dividend at t=6 will be $1.15(1+0.05)^2, and so on.
The required return on the stock is 10% pa. Both the growth rate and required return are given as effective annual rates.
What will be the price of the stock in three and a half years (t = 3.5)?
The following equation is the Dividend Discount Model, also known as the 'Gordon Growth Model' or the 'Perpetuity with growth' equation.
### p_0 = \frac{d_1}{r  g} ###
Which expression is NOT equal to the expected dividend yield?
A fairly valued share's current price is $4 and it has a total required return of 30%. Dividends are paid annually and next year's dividend is expected to be $1. After that, dividends are expected to grow by 5% pa in perpetuity. All rates are effective annual returns.
What is the expected dividend income paid at the end of the second year (t=2) and what is the expected capital gain from just after the first dividend (t=1) to just after the second dividend (t=2)? The answers are given in the same order, the dividend and then the capital gain.
Question 50 DDM, stock pricing, inflation, real and nominal returns and cash flows
Most listed Australian companies pay dividends twice per year, the 'interim' and 'final' dividends, which are roughly 6 months apart.
You are an equities analyst trying to value the company BHP. You decide to use the Dividend Discount Model (DDM) as a starting point, so you study BHP's dividend history and you find that BHP tends to pay the same interim and final dividend each year, and that both grow by the same rate.
You expect BHP will pay a $0.55 interim dividend in six months and a $0.55 final dividend in one year. You expect each to grow by 4% next year and forever, so the interim and final dividends next year will be $0.572 each, and so on in perpetuity.
Assume BHP's cost of equity is 8% pa. All rates are quoted as nominal effective rates. The dividends are nominal cash flows and the inflation rate is 2.5% pa.
What is the current price of a BHP share?
Question 535 DDM, real and nominal returns and cash flows, stock pricing
You are an equities analyst trying to value the equity of the Australian telecoms company Telstra, with ticker TLS. In Australia, listed companies like Telstra tend to pay dividends every 6 months. The payment around August is called the final dividend and the payment around February is called the interim dividend. Both occur annually.
 Today is midMarch 2015.
 TLS's last interim dividend of $0.15 was one month ago in midFebruary 2015.
 TLS's last final dividend of $0.15 was seven months ago in midAugust 2014.
Judging by TLS's dividend history and prospects, you estimate that the nominal dividend growth rate will be 1% pa. Assume that TLS's total nominal cost of equity is 6% pa. The dividends are nominal cash flows and the inflation rate is 2.5% pa. All rates are quoted as nominal effective annual rates. Assume that each month is exactly one twelfth (1/12) of a year, so you can ignore the number of days in each month.
Calculate the current TLS share price.
A stock is expected to pay a dividend of $15 in one year (t=1), then $25 for 9 years after that (payments at t=2 ,3,...10), and on the 11th year (t=11) the dividend will be 2% less than at t=10, and will continue to shrink at the same rate every year after that forever. The required return of the stock is 10%. All rates are effective annual rates.
What is the price of the stock now?
Question 180 equivalent annual cash flow, inflation, real and nominal returns and cash flows
Details of two different types of light bulbs are given below:
 Lowenergy light bulbs cost $3.50, have a life of nine years, and use about $1.60 of electricity a year, paid at the end of each year.
 Conventional light bulbs cost only $0.50, but last only about a year and use about $6.60 of energy a year, paid at the end of each year.
The real discount rate is 5%, given as an effective annual rate. Assume that all cash flows are real. The inflation rate is 3% given as an effective annual rate.
Find the Equivalent Annual Cost (EAC) of the lowenergy and conventional light bulbs. The below choices are listed in that order.
The required return of a project is 10%, given as an effective annual rate. Assume that the cash flows shown in the table are paid all at once at the given point in time.
What is the Net Present Value (NPV) of the project?
Project Cash Flows  
Time (yrs)  Cash flow ($) 
0  100 
1  0 
2  121 
Question 353 income and capital returns, inflation, real and nominal returns and cash flows, real estate
A residential investment property has an expected nominal total return of 6% pa and nominal capital return of 3% pa.
Inflation is expected to be 2% pa. All rates are given as effective annual rates.
What are the property's expected real total, capital and income returns? The answer choices below are given in the same order.
Total cash flows can be broken into income and capital cash flows. What is the name given to the income cash flow from owning shares?
A share was bought for $30 (at t=0) and paid its annual dividend of $6 one year later (at t=1).
Just after the dividend was paid, the share price fell to $27 (at t=1). What were the total, capital and income returns given as effective annual rates?
The choices are given in the same order:
##r_\text{total}## , ##r_\text{capital}## , ##r_\text{dividend}##.
One and a half years ago Frank bought a house for $600,000. Now it's worth only $500,000, based on recent similar sales in the area.
The expected total return on Frank's residential property is 7% pa.
He rents his house out for $1,600 per month, paid in advance. Every 12 months he plans to increase the rental payments.
The present value of 12 months of rental payments is $18,617.27.
The future value of 12 months of rental payments one year in the future is $19,920.48.
What is the expected annual rental yield of the property? Ignore the costs of renting such as maintenance, real estate agent fees and so on.
Question 407 income and capital returns, inflation, real and nominal returns and cash flows
A stock has a real expected total return of 7% pa and a real expected capital return of 2% pa.
Inflation is expected to be 2% pa. All rates are given as effective annual rates.
What is the nominal expected total return, capital return and dividend yield? The answers below are given in the same order.
Question 295 inflation, real and nominal returns and cash flows, NPV
When valuing assets using discounted cash flow (net present value) methods, it is important to consider inflation. To properly deal with inflation:
(I) Discount nominal cash flows by nominal discount rates.
(II) Discount nominal cash flows by real discount rates.
(III) Discount real cash flows by nominal discount rates.
(IV) Discount real cash flows by real discount rates.
Which of the above statements is or are correct?
Question 526 real and nominal returns and cash flows, inflation, no explanation
How can a nominal cash flow be precisely converted into a real cash flow?
The below screenshot of Commonwealth Bank of Australia's (CBA) details were taken from the Google Finance website on 7 Nov 2014. Some information has been deliberately blanked out.
What was CBA's market capitalisation of equity?
Which business structure or structures have the advantage of limited liability for equity investors?
Question 531 bankruptcy or insolvency, capital structure, risk, limited liability
Who is most in danger of being personally bankrupt? Assume that all of their businesses' assets are highly liquid and can therefore be sold immediately.
Question 554 inflation, real and nominal returns and cash flows
On his 20th birthday, a man makes a resolution. He will put $30 cash under his bed at the end of every month starting from today. His birthday today is the first day of the month. So the first addition to his cash stash will be in one month. He will write in his will that when he dies the cash under the bed should be given to charity.
If the man lives for another 60 years, how much money will be under his bed if he dies just after making his last (720th) addition?
Also, what will be the real value of that cash in today's prices if inflation is expected to 2.5% pa? Assume that the inflation rate is an effective annual rate and is not expected to change.
The answers are given in the same order, the amount of money under his bed in 60 years, and the real value of that money in today's prices.
Question 577 inflation, real and nominal returns and cash flows
What is the present value of a real payment of $500 in 2 years? The nominal discount rate is 7% pa and the inflation rate is 4% pa.
The saying "buy low, sell high" suggests that investors should make a:
An asset's total expected return over the next year is given by:
###r_\text{total} = \dfrac{c_1+p_1p_0}{p_0} ###
Where ##p_0## is the current price, ##c_1## is the expected income in one year and ##p_1## is the expected price in one year. The total return can be split into the income return and the capital return.
Which of the following is the expected capital return?
Question 525 income and capital returns, real and nominal returns and cash flows, inflation
Which of the following statements about cash in the form of notes and coins is NOT correct? Assume that inflation is positive.
Notes and coins:
Question 444 investment decision, corporate financial decision theory
The investment decision primarily affects which part of a business?
Question 443 corporate financial decision theory, investment decision, financing decision, working capital decision, payout policy
Business people make lots of important decisions. Which of the following is the most important long term decision?
Question 445 financing decision, corporate financial decision theory
The financing decision primarily affects which part of a business?
Which of the following statements about book and market equity is NOT correct?
You're considering making an investment in a particular company. They have preference shares, ordinary shares, senior debt and junior debt.
Which is the safest investment? Which will give the highest returns?
Question 575 inflation, real and nominal returns and cash flows
You expect a nominal payment of $100 in 5 years. The real discount rate is 10% pa and the inflation rate is 3% pa. Which of the following statements is NOT correct?
Question 446 working capital decision, corporate financial decision theory
The working capital decision primarily affects which part of a business?
Question 498 NPV, Annuity, perpetuity with growth, multi stage growth model
A business project is expected to cost $100 now (t=0), then pay $10 at the end of the third (t=3), fourth, fifth and sixth years, and then grow by 5% pa every year forever. So the cash flow will be $10.5 at the end of the seventh year (t=7), then $11.025 at the end of the eighth year (t=8) and so on perpetually. The total required return is 10℅ pa.
Which of the following formulas will NOT give the correct net present value of the project?
What is the Internal Rate of Return (IRR) of the project detailed in the table below?
Assume that the cash flows shown in the table are paid all at once at the given point in time. All answers are given as effective annual rates.
Project Cash Flows  
Time (yrs)  Cash flow ($) 
0  100 
1  0 
2  121 
If a project's net present value (NPV) is zero, then its internal rate of return (IRR) will be:
The below graph shows a project's net present value (NPV) against its annual discount rate.
For what discount rate or range of discount rates would you accept and commence the project?
All answer choices are given as approximations from reading off the graph.
The below graph shows a project's net present value (NPV) against its annual discount rate.
Which of the following statements is NOT correct?
You have $100,000 in the bank. The bank pays interest at 10% pa, given as an effective annual rate.
You wish to consume an equal amount now (t=0) and in one year (t=1) and have nothing left in the bank at the end (t=1).
How much can you consume at each time?
A project has the following cash flows:
Project Cash Flows  
Time (yrs)  Cash flow ($) 
0  400 
1  0 
2  500 
What is the payback period of the project in years?
Normally cash flows are assumed to happen at the given time. But here, assume that the cash flows are received smoothly over the year. So the $500 at time 2 is actually earned smoothly from t=1 to t=2.
The required return of a project is 10%, given as an effective annual rate.
What is the payback period of the project in years?
Assume that the cash flows shown in the table are received smoothly over the year. So the $121 at time 2 is actually earned smoothly from t=1 to t=2.
Project Cash Flows  
Time (yrs)  Cash flow ($) 
0  100 
1  11 
2  121 
An investor owns an empty block of land that has local government approval to be developed into a petrol station, car wash or car park. The council will only allow a single development so the projects are mutually exclusive.
All of the development projects have the same risk and the required return of each is 10% pa. Each project has an immediate cost and once construction is finished in one year the land and development will be sold. The table below shows the estimated costs payable now, expected sale prices in one year and the internal rates of returns (IRR's).
Mutually Exclusive Projects  
Project  Cost now ($) 
Sale price in one year ($) 
IRR (% pa) 
Petrol station  9,000,000  11,000,000  22.22 
Car wash  800,000  1,100,000  37.50 
Car park  70,000  110,000  57.14 
Which project should the investor accept?
Question 579 price gains and returns over time, time calculation, effective rate
How many years will it take for an asset's price to double if the price grows by 10% pa?
Question 580 price gains and returns over time, time calculation, effective rate
How many years will it take for an asset's price to quadruple (be four times as big, say from $1 to $4) if the price grows by 15% pa?
Your neighbour asks you for a loan of $100 and offers to pay you back $120 in one year.
You don't actually have any money right now, but you can borrow and lend from the bank at a rate of 10% pa. Rates are given as effective annual rates.
Assume that your neighbour will definitely pay you back. Ignore interest tax shields and transaction costs.
The Net Present Value (NPV) of lending to your neighbour is $9.09. Describe what you would do to actually receive a $9.09 cash flow right now with zero net cash flows in the future.
You have $100,000 in the bank. The bank pays interest at 10% pa, given as an effective annual rate.
You wish to consume an equal amount now (t=0), in one year (t=1) and in two years (t=2), and still have $50,000 in the bank after that (t=2).
How much can you consume at each time?
A firm is considering a business project which costs $11m now and is expected to pay a constant $1m at the end of every year forever.
Assume that the initial $11m cost is funded using the firm's existing cash so no new equity or debt will be raised. The cost of capital is 10% pa.
Which of the following statements about net present value (NPV), internal rate of return (IRR) and payback period is NOT correct?
An investor owns a whole level of an old office building which is currently worth $1 million. There are three mutually exclusive projects that can be started by the investor. The office building level can be:
 Rented out to a tenant for one year at $0.1m paid immediately, and then sold for $0.99m in one year.
 Refurbished into more modern commercial office rooms at a cost of $1m now, and then sold for $2.4m when the refurbishment is finished in one year.
 Converted into residential apartments at a cost of $2m now, and then sold for $3.4m when the conversion is finished in one year.
All of the development projects have the same risk so the required return of each is 10% pa. The table below shows the estimated cash flows and internal rates of returns (IRR's).
Mutually Exclusive Projects  
Project  Cash flow now ($) 
Cash flow in one year ($) 
IRR (% pa) 
Rent then sell as is  900,000  990,000  10 
Refurbishment into modern offices  2,000,000  2,400,000  20 
Conversion into residential apartments  3,000,000  3,400,000  13.33 
Which project should the investor accept?
Which of the below statements about effective rates and annualised percentage rates (APR's) is NOT correct?
Which of the following statements about effective rates and annualised percentage rates (APR's) is NOT correct?
A credit card offers an interest rate of 18% pa, compounding monthly.
Find the effective monthly rate, effective annual rate and the effective daily rate. Assume that there are 365 days in a year.
All answers are given in the same order:
### r_\text{eff monthly} , r_\text{eff yearly} , r_\text{eff daily} ###
A European bond paying annual coupons of 6% offers a yield of 10% pa.
Convert the yield into an effective monthly rate, an effective annual rate and an effective daily rate. Assume that there are 365 days in a year.
All answers are given in the same order:
### r_\text{eff, monthly} , r_\text{eff, yearly} , r_\text{eff, daily} ###
Calculate the effective annual rates of the following three APR's:
 A credit card offering an interest rate of 18% pa, compounding monthly.
 A bond offering a yield of 6% pa, compounding semiannually.
 An annual dividendpaying stock offering a return of 10% pa compounding annually.
All answers are given in the same order:
##r_\text{credit card, eff yrly}##, ##r_\text{bond, eff yrly}##, ##r_\text{stock, eff yrly}##
Question 49 inflation, real and nominal returns and cash flows, APR, effective rate
In Australia, nominal yields on semiannual coupon paying Government Bonds with 2 years until maturity are currently 2.83% pa.
The inflation rate is currently 2.2% pa, given as an APR compounding per quarter. The inflation rate is not expected to change over the next 2 years.
What is the real yield on these bonds, given as an APR compounding every 6 months?
Question 64 inflation, real and nominal returns and cash flows, APR, effective rate
In Germany, nominal yields on semiannual coupon paying Government Bonds with 2 years until maturity are currently 0.04% pa.
The inflation rate is currently 1.4% pa, given as an APR compounding per quarter. The inflation rate is not expected to change over the next 2 years.
What is the real yield on these bonds, given as an APR compounding every 6 months?
On his 20th birthday, a man makes a resolution. He will deposit $30 into a bank account at the end of every month starting from now, which is the start of the month. So the first payment will be in one month. He will write in his will that when he dies the money in the account should be given to charity.
The bank account pays interest at 6% pa compounding monthly, which is not expected to change.
If the man lives for another 60 years, how much money will be in the bank account if he dies just after making his last (720th) payment?
You want to buy an apartment priced at $300,000. You have saved a deposit of $30,000. The bank has agreed to lend you the $270,000 as a fully amortising loan with a term of 25 years. The interest rate is 12% pa and is not expected to change.
What will be your monthly payments? Remember that mortgage loan payments are paid in arrears (at the end of the month).
You want to buy an apartment worth $500,000. You have saved a deposit of $50,000. The bank has agreed to lend you the $450,000 as a fully amortising mortgage loan with a term of 25 years. The interest rate is 6% pa and is not expected to change.
What will be your monthly payments?
You want to buy a house priced at $400,000. You have saved a deposit of $40,000. The bank has agreed to lend you $360,000 as a fully amortising loan with a term of 30 years. The interest rate is 8% pa payable monthly and is not expected to change.
What will be your monthly payments?
You just agreed to a 30 year fully amortising mortgage loan with monthly payments of $2,500. The interest rate is 9% pa which is not expected to change.
How much did you borrow? After 10 years, how much will be owing on the mortgage? The interest rate is still 9% and is not expected to change. The below choices are given in the same order.
You want to buy an apartment worth $400,000. You have saved a deposit of $80,000. The bank has agreed to lend you the $320,000 as a fully amortising mortgage loan with a term of 30 years. The interest rate is 6% pa and is not expected to change. What will be your monthly payments?
You want to buy an apartment priced at $500,000. You have saved a deposit of $50,000. The bank has agreed to lend you the $450,000 as a fully amortising loan with a term of 30 years. The interest rate is 6% pa and is not expected to change. What will be your monthly payments?
You just signed up for a 30 year fully amortising mortgage loan with monthly payments of $2,000 per month. The interest rate is 9% pa which is not expected to change.
How much did you borrow? After 5 years, how much will be owing on the mortgage? The interest rate is still 9% and is not expected to change.
You just signed up for a 30 year fully amortising mortgage with monthly payments of $1,000 per month. The interest rate is 6% pa which is not expected to change.
How much did you borrow? After 20 years, how much will be owing on the mortgage? The interest rate is still 6% and is not expected to change.
You just signed up for a 30 year fully amortising mortgage loan with monthly payments of $1,500 per month. The interest rate is 9% pa which is not expected to change.
How much did you borrow? After 10 years, how much will be owing on the mortgage? The interest rate is still 9% and is not expected to change.
You just signed up for a 30 year fully amortising mortgage loan with monthly payments of $1,500 per month. The interest rate is 9% pa which is not expected to change.
To your surprise, you can actually afford to pay $2,000 per month and your mortgage allows early repayments without fees. If you maintain these higher monthly payments, how long will it take to pay off your mortgage?
You want to buy an apartment priced at $300,000. You have saved a deposit of $30,000. The bank has agreed to lend you the $270,000 as an interest only loan with a term of 25 years. The interest rate is 12% pa and is not expected to change.
What will be your monthly payments? Remember that mortgage payments are paid in arrears (at the end of the month).
You just signed up for a 30 year interestonly mortgage with monthly payments of $3,000 per month. The interest rate is 6% pa which is not expected to change.
How much did you borrow? After 15 years, just after the 180th payment at that time, how much will be owing on the mortgage? The interest rate is still 6% and is not expected to change. Remember that the mortgage is interestonly and that mortgage payments are paid in arrears (at the end of the month).
You want to buy an apartment worth $300,000. You have saved a deposit of $60,000.
The bank has agreed to lend you $240,000 as an interest only mortgage loan with a term of 30 years. The interest rate is 6% pa and is not expected to change. What will be your monthly payments?
You want to buy an apartment priced at $500,000. You have saved a deposit of $50,000. The bank has agreed to lend you the $450,000 as an interest only loan with a term of 30 years. The interest rate is 6% pa and is not expected to change. What will be your monthly payments?
Question 239 income and capital returns, inflation, real and nominal returns and cash flows, interest only loan
A bank grants a borrower an interestonly residential mortgage loan with a very large 50% deposit and a nominal interest rate of 6% that is not expected to change. Assume that inflation is expected to be a constant 2% pa over the life of the loan. Ignore credit risk.
From the bank's point of view, what is the long term expected nominal capital return of the loan asset?
A prospective home buyer can afford to pay $2,000 per month in mortgage loan repayments. The central bank recently lowered its policy rate by 0.25%, and residential home lenders cut their mortgage loan rates from 4.74% to 4.49%.
How much more can the prospective home buyer borrow now that interest rates are 4.49% rather than 4.74%? Give your answer as a proportional increase over the original amount he could borrow (##V_\text{before}##), so:
###\text{Proportional increase} = \frac{V_\text{after}V_\text{before}}{V_\text{before}} ###Assume that:
 Interest rates are expected to be constant over the life of the loan.
 Loans are interestonly and have a life of 30 years.
 Mortgage loan payments are made every month in arrears and all interest rates are given as annualised percentage rates compounding per month.
In Australia in the 1980's, inflation was around 8% pa, and residential mortgage loan interest rates were around 14%.
In 2013, inflation was around 2.5% pa, and residential mortgage loan interest rates were around 4.5%.
If a person can afford constant mortgage loan payments of $2,000 per month, how much more can they borrow when interest rates are 4.5% pa compared with 14.0% pa?
Give your answer as a proportional increase over the amount you could borrow when interest rates were high ##(V_\text{high rates})##, so:
###\text{Proportional increase} = \dfrac{V_\text{low rates}V_\text{high rates}}{V_\text{high rates}} ###
Assume that:
 Interest rates are expected to be constant over the life of the loan.
 Loans are interestonly and have a life of 30 years.
 Mortgage loan payments are made every month in arrears and all interest rates are given as annualised percentage rates (APR's) compounding per month.
The required return of a project is 10%, given as an effective annual rate. Assume that the cash flows shown in the table are paid all at once at the given point in time.
What is the Profitability Index (PI) of the project?
Project Cash Flows  
Time (yrs)  Cash flow ($) 
0  100 
1  0 
2  121 
A project has the following cash flows:
Project Cash Flows  
Time (yrs)  Cash flow ($) 
0  400 
1  200 
2  250 
What is the Profitability Index (PI) of the project? Assume that the cash flows shown in the table are paid all at once at the given point in time. The required return is 10% pa, given as an effective annual rate.
A project's Profitability Index (PI) is less than 1. Select the most correct statement:
A project has the following cash flows:
Project Cash Flows  
Time (yrs)  Cash flow ($) 
0  90 
1  30 
2  105 
The required return of a project is 10%, given as an effective annual rate. Assume that the cash flows shown in the table are paid all at once at the given point in time.
What is the Profitability Index (PI) of the project?
A lowquality secondhand car can be bought now for $1,000 and will last for 1 year before it will be scrapped for nothing.
A highquality secondhand car can be bought now for $4,900 and it will last for 5 years before it will be scrapped for nothing.
What is the equivalent annual cost of each car? Assume a discount rate of 10% pa, given as an effective annual rate.
The answer choices are given as the equivalent annual cost of the lowquality car and then the high quality car.
You're advising your superstar client 40cent who is weighing up buying a private jet or a luxury yacht. 40cent is just as happy with either, but he wants to go with the more costeffective option. These are the cash flows of the two options:
 The private jet can be bought for $6m now, which will cost $12,000 per month in fuel, piloting and airport costs, payable at the end of each month. The jet will last for 12 years.
 Or the luxury yacht can be bought for $4m now, which will cost $20,000 per month in fuel, crew and berthing costs, payable at the end of each month. The yacht will last for 20 years.
What's unusual about 40cent is that he is so famous that he will actually be able to sell his jet or yacht for the same price as it was bought since the next generation of superstar musicians will buy it from him as a status symbol.
Bank interest rates are 10% pa, given as an effective annual rate. You can assume that 40cent will live for another 60 years and that when the jet or yacht's life is at an end, he will buy a new one with the same details as above.
Would you advise 40cent to buy the or the ?
Note that the effective monthly rate is ##r_\text{eff monthly}=(1+0.1)^{1/12}1=0.00797414##
Question 658 CFFA, income statement, balance sheet, no explanation
To value a business's assets, the free cash flow of the firm (FCFF, also called CFFA) needs to be calculated. This requires figures from the firm's income statement and balance sheet. For what figures is the income statement needed? Note that the income statement is sometimes also called the profit and loss, P&L, or statement of financial performance.
Diversification in a portfolio of two assets works best when the correlation between their returns is:
Question 559 variance, standard deviation, covariance, correlation
Which of the following statements about standard statistical mathematics notation is NOT correct?
Portfolio Details  
Stock  Expected return 
Standard deviation 
Correlation ##(\rho_{A,B})##  Dollars invested 

A  0.1  0.4  0.5  60  
B  0.2  0.6  140  
What is the standard deviation (not variance) of the above portfolio?
An investor wants to make a portfolio of two stocks A and B with a target expected portfolio return of 6% pa.
 Stock A has an expected return of 5% pa.
 Stock B has an expected return of 10% pa.
What portfolio weights should the investor have in stocks A and B respectively?
Question 556 portfolio risk, portfolio return, standard deviation
An investor wants to make a portfolio of two stocks A and B with a target expected portfolio return of 12% pa.
 Stock A has an expected return of 10% pa and a standard deviation of 20% pa.
 Stock B has an expected return of 15% pa and a standard deviation of 30% pa.
The correlation coefficient between stock A and B's expected returns is 70%.
What will be the annual standard deviation of the portfolio with this 12% pa target return?
What is the correlation of a variable X with itself?
The corr(X, X) or ##\rho_{X,X}## equals:
What is the correlation of a variable X with a constant C?
The corr(X, C) or ##\rho_{X,C}## equals:
The covariance and correlation of two stocks X and Y's annual returns are calculated over a number of years. The units of the returns are in percent per annum ##(\% pa)##.
What are the units of the covariance ##(\sigma_{X,Y})## and correlation ##(\rho_{X,Y})## of returns respectively?
Hint: Visit Wikipedia to understand the difference between percentage points ##(\text{pp})## and percent ##(\%)##.
Let the standard deviation of returns for a share per month be ##\sigma_\text{monthly}##.
What is the formula for the standard deviation of the share's returns per year ##(\sigma_\text{yearly})##?
Assume that returns are independently and identically distributed (iid) so they have zero auto correlation, meaning that if the return was higher than average today, it does not indicate that the return tomorrow will be higher or lower than average.
Two risky stocks A and B comprise an equalweighted portfolio. The correlation between the stocks' returns is 70%.
If the variance of stock A increases but the:
 Prices and expected returns of each stock stays the same,
 Variance of stock B's returns stays the same,
 Correlation of returns between the stocks stays the same.
Which of the following statements is NOT correct?
All things remaining equal, the higher the correlation of returns between two stocks:
All things remaining equal, the variance of a portfolio of two positivelyweighted stocks rises as:
Portfolio Details  
Stock  Expected return 
Standard deviation 
Correlation  Dollars invested 

A  0.1  0.4  0.5  60  
B  0.2  0.6  140  
What is the expected return of the above portfolio?
Question 558 portfolio weights, portfolio return, short selling
An investor wants to make a portfolio of two stocks A and B with a target expected portfolio return of 16% pa.
 Stock A has an expected return of 8% pa.
 Stock B has an expected return of 12% pa.
What portfolio weights should the investor have in stocks A and B respectively?
Stock A and B's returns have a correlation of 0.3. Which statement is NOT correct?
Portfolio Details  
Stock  Expected return 
Standard deviation 
Covariance ##(\sigma_{A,B})##  Beta  Dollars invested 

A  0.2  0.4  0.12  0.5  40  
B  0.3  0.8  1.5  80  
What is the standard deviation (not variance) of the above portfolio? Note that the stocks' covariance is given, not correlation.
Portfolio Details  
Stock  Expected return 
Standard deviation 
Correlation  Beta  Dollars invested 

A  0.2  0.4  0.12  0.5  40  
B  0.3  0.8  1.5  80  
What is the beta of the above portfolio?
Which of the following statements about shortselling is NOT true?
Question 282 expected and historical returns, income and capital returns
You're the boss of an investment bank's equities research team. Your five analysts are each trying to find the expected total return over the next year of shares in a mining company. The mining firm:
 Is regarded as a mature company since it's quite stable in size and was floated around 30 years ago. It is not a highgrowth company;
 Share price is very sensitive to changes in the price of the market portfolio, economic growth, the exchange rate and commodities prices. Due to this, its standard deviation of total returns is much higher than that of the market index;
 Experienced tough times in the last 10 years due to unexpected falls in commodity prices.
 Shares are traded in an active liquid market.
Assume that:
 The analysts' source data is correct and true, but their inferences might be wrong;
 All returns and yields are given as effective annual nominal rates.
The following table shows a sample of historical total returns of shares in two different companies A and B.
Stock Returns  
Total effective annual returns  
Year  ##r_A##  ##r_B## 
2007  0.2  0.4 
2008  0.04  0.2 
2009  0.1  0.3 
2010  0.18  0.5 
What is the historical sample covariance (##\hat{\sigma}_{A,B}##) and correlation (##\rho_{A,B}##) of stock A and B's total effective annual returns?
Here are the Net Income (NI) and Cash Flow From Assets (CFFA) equations:
###NI=(RevCOGSFCDeprIntExp).(1t_c)###
###CFFA=NI+DeprCapEx  \varDelta NWC+IntExp###
What is the formula for calculating annual interest expense (IntExp) which is used in the equations above?
Select one of the following answers. Note that D is the value of debt which is constant through time, and ##r_D## is the cost of debt.
Question 121 capital structure, leverage, financial distress, interest tax shield
Fill in the missing words in the following sentence:
All things remaining equal, as a firm's amount of debt funding falls, benefits of interest tax shields __________ and the costs of financial distress __________.
Your friend just bought a house for $1,000,000. He financed it using a $900,000 mortgage loan and a deposit of $100,000.
In the context of residential housing and mortgages, the 'equity' or 'net wealth' tied up in a house is the value of the house less the value of the mortgage loan. Assuming that your friend's only asset is his house, his net wealth is $100,000.
If house prices suddenly fall by 15%, what would be your friend's percentage change in net wealth?
Assume that:
 No income (rent) was received from the house during the short time over which house prices fell.
 Your friend will not declare bankruptcy, he will always pay off his debts.
One formula for calculating a levered firm's free cash flow (FFCF, or CFFA) is to use net operating profit after tax (NOPAT).
###\begin{aligned} FFCF &= NOPAT + Depr  CapEx \Delta NWC \\ &= (Rev  COGS  Depr  FC)(1t_c) + Depr  CapEx \Delta NWC \\ \end{aligned} \\###
Your friend just bought a house for $400,000. He financed it using a $320,000 mortgage loan and a deposit of $80,000.
In the context of residential housing and mortgages, the 'equity' tied up in the value of a person's house is the value of the house less the value of the mortgage. So the initial equity your friend has in his house is $80,000. Let this amount be E, let the value of the mortgage be D and the value of the house be V. So ##V=D+E##.
If house prices suddenly fall by 10%, what would be your friend's percentage change in equity (E)? Assume that the value of the mortgage is unchanged and that no income (rent) was received from the house during the short time over which house prices fell.
Remember:
### r_{0\rightarrow1}=\frac{p_1p_0+c_1}{p_0} ###
where ##r_{01}## is the return (percentage change) of an asset with price ##p_0## initially, ##p_1## one period later, and paying a cash flow of ##c_1## at time ##t=1##.
A firm has a debttoequity ratio of 25%. What is its debttoassets ratio?
One formula for calculating a levered firm's free cash flow (FFCF, or CFFA) is to use earnings before interest and tax (EBIT).
###\begin{aligned} FFCF &= (EBIT)(1t_c) + Depr  CapEx \Delta NWC + IntExp.t_c \\ &= (Rev  COGS  Depr  FC)(1t_c) + Depr  CapEx \Delta NWC + IntExp.t_c \\ \end{aligned} \\###
Diversification is achieved by investing in a large amount of stocks. What type of risk is reduced by diversification?
According to the theory of the Capital Asset Pricing Model (CAPM), total risk can be broken into two components, systematic risk and idiosyncratic risk. Which of the following events would be considered a systematic, undiversifiable event according to the theory of the CAPM?
Find Candys Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.
Candys Corp  
Income Statement for  
year ending 30th June 2013  
$m  
Sales  200  
COGS  50  
Operating expense  10  
Depreciation  20  
Interest expense  10  
Income before tax  110  
Tax at 30%  33  
Net income  77  
Candys Corp  
Balance Sheet  
as at 30th June  2013  2012 
$m  $m  
Assets  
Current assets  220  180 
PPE  
Cost  300  340 
Accumul. depr.  60  40 
Carrying amount  240  300 
Total assets  460  480 
Liabilities  
Current liabilities  175  190 
Noncurrent liabilities  135  130 
Owners' equity  
Retained earnings  50  60 
Contributed equity  100  100 
Total L and OE  460  480 
Note: all figures are given in millions of dollars ($m).
Why is Capital Expenditure (CapEx) subtracted in the Cash Flow From Assets (CFFA) formula?
###CFFA=NI+DeprCapEx  \Delta NWC+IntExp###
Which one of the following will decrease net income (NI) but increase cash flow from assets (CFFA) in this year for a taxpaying firm, all else remaining constant?
Remember:
###NI = (RevCOGSFCDeprIntExp).(1t_c )### ###CFFA=NI+DeprCapEx  \Delta NWC+IntExp###A company increases the proportion of debt funding it uses to finance its assets by issuing bonds and using the cash to repurchase stock, leaving assets unchanged.
Ignoring the costs of financial distress, which of the following statements is NOT correct:
Find Sidebar Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.
Sidebar Corp  
Income Statement for  
year ending 30th June 2013  
$m  
Sales  405  
COGS  100  
Depreciation  34  
Rent expense  22  
Interest expense  39  
Taxable Income  210  
Taxes at 30%  63  
Net income  147  
Sidebar Corp  
Balance Sheet  
as at 30th June  2013  2012 
$m  $m  
Inventory  70  50 
Trade debtors  11  16 
Rent paid in advance  4  3 
PPE  700  680 
Total assets  785  749 
Trade creditors  11  19 
Bond liabilities  400  390 
Contributed equity  220  220 
Retained profits  154  120 
Total L and OE  785  749 
Note: All figures are given in millions of dollars ($m).
The cash flow from assets was:
Over the next year, the management of an unlevered company plans to:
 Achieve firm free cash flow (FFCF or CFFA) of $1m.
 Pay dividends of $1.8m
 Complete a $1.3m share buyback.
 Spend $0.8m on new buildings without buying or selling any other fixed assets. This capital expenditure is included in the CFFA figure quoted above.
Assume that:
 All amounts are received and paid at the end of the year so you can ignore the time value of money.
 The firm has sufficient retained profits to pay the dividend and complete the buy back.
 The firm plans to run a very tight ship, with no excess cash above operating requirements currently or over the next year.
How much new equity financing will the company need? In other words, what is the value of new shares that will need to be issued?
Which one of the following will have no effect on net income (NI) but decrease cash flow from assets (CFFA or FFCF) in this year for a taxpaying firm, all else remaining constant?
Remember:
###NI=(RevCOGSFCDeprIntExp).(1t_c )### ###CFFA=NI+DeprCapEx  ΔNWC+IntExp###Read the following financial statements and calculate the firm's free cash flow over the 2014 financial year.
UBar Corp  
Income Statement for  
year ending 30th June 2014  
$m  
Sales  293  
COGS  200  
Rent expense  15  
Gas expense  8  
Depreciation  10  
EBIT  60  
Interest expense  0  
Taxable income  60  
Taxes  18  
Net income  42  
UBar Corp  
Balance Sheet  
as at 30th June  2014  2013 
$m  $m  
Assets  
Cash  30  29 
Accounts receivable  5  7 
Prepaid rent expense  1  0 
Inventory  50  46 
PPE  290  300 
Total assets  376  382 
Liabilities  
Trade payables  20  18 
Accrued gas expense  3  2 
Noncurrent liabilities  0  0 
Contributed equity  212  212 
Retained profits  136  150 
Asset revaluation reserve  5  0 
Total L and OE  376  382 
Note: all figures are given in millions of dollars ($m).
The firm's free cash flow over the 2014 financial year was:
Find Trademark Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.
Trademark Corp  
Income Statement for  
year ending 30th June 2013  
$m  
Sales  100  
COGS  25  
Operating expense  5  
Depreciation  20  
Interest expense  20  
Income before tax  30  
Tax at 30%  9  
Net income  21  
Trademark Corp  
Balance Sheet  
as at 30th June  2013  2012 
$m  $m  
Assets  
Current assets  120  80 
PPE  
Cost  150  140 
Accumul. depr.  60  40 
Carrying amount  90  100 
Total assets  210  180 
Liabilities  
Current liabilities  75  65 
Noncurrent liabilities  75  55 
Owners' equity  
Retained earnings  10  10 
Contributed equity  50  50 
Total L and OE  210  180 
Note: all figures are given in millions of dollars ($m).
Find UniBar Corp's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.
UniBar Corp  
Income Statement for  
year ending 30th June 2013  
$m  
Sales  80  
COGS  40  
Operating expense  15  
Depreciation  10  
Interest expense  5  
Income before tax  10  
Tax at 30%  3  
Net income  7  
UniBar Corp  
Balance Sheet  
as at 30th June  2013  2012 
$m  $m  
Assets  
Current assets  120  90 
PPE  
Cost  360  320 
Accumul. depr.  40  30 
Carrying amount  320  290 
Total assets  440  380 
Liabilities  
Current liabilities  110  60 
Noncurrent liabilities  190  180 
Owners' equity  
Retained earnings  95  95 
Contributed equity  45  45 
Total L and OE  440  380 
Note: all figures are given in millions of dollars ($m).
Find Piano Bar's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.
Piano Bar  
Income Statement for  
year ending 30th June 2013  
$m  
Sales  310  
COGS  185  
Operating expense  20  
Depreciation  15  
Interest expense  10  
Income before tax  80  
Tax at 30%  24  
Net income  56  
Piano Bar  
Balance Sheet  
as at 30th June  2013  2012 
$m  $m  
Assets  
Current assets  240  230 
PPE  
Cost  420  400 
Accumul. depr.  50  35 
Carrying amount  370  365 
Total assets  610  595 
Liabilities  
Current liabilities  180  190 
Noncurrent liabilities  290  265 
Owners' equity  
Retained earnings  90  90 
Contributed equity  50  50 
Total L and OE  610  595 
Note: all figures are given in millions of dollars ($m).
Find World Bar's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.
World Bar  
Income Statement for  
year ending 30th June 2013  
$m  
Sales  300  
COGS  150  
Operating expense  50  
Depreciation  40  
Interest expense  10  
Taxable income  50  
Tax at 30%  15  
Net income  35  
World Bar  
Balance Sheet  
as at 30th June  2013  2012 
$m  $m  
Assets  
Current assets  200  230 
PPE  
Cost  400  400 
Accumul. depr.  75  35 
Carrying amount  325  365 
Total assets  525  595 
Liabilities  
Current liabilities  150  205 
Noncurrent liabilities  235  250 
Owners' equity  
Retained earnings  100  100 
Contributed equity  40  40 
Total L and OE  525  595 
Note: all figures above and below are given in millions of dollars ($m).
Find Scubar Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.
Scubar Corp  
Income Statement for  
year ending 30th June 2013  
$m  
Sales  200  
COGS  60  
Depreciation  20  
Rent expense  11  
Interest expense  19  
Taxable Income  90  
Taxes at 30%  27  
Net income  63  
Scubar Corp  
Balance Sheet  
as at 30th June  2013  2012 
$m  $m  
Inventory  60  50 
Trade debtors  19  6 
Rent paid in advance  3  2 
PPE  420  400 
Total assets  502  458 
Trade creditors  10  8 
Bond liabilities  200  190 
Contributed equity  130  130 
Retained profits  162  130 
Total L and OE  502  458 
Note: All figures are given in millions of dollars ($m).
The cash flow from assets was:
Find ChingALings Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.
ChingALings Corp  
Income Statement for  
year ending 30th June 2013  
$m  
Sales  100  
COGS  20  
Depreciation  20  
Rent expense  11  
Interest expense  19  
Taxable Income  30  
Taxes at 30%  9  
Net income  21  
ChingALings Corp  
Balance Sheet  
as at 30th June  2013  2012 
$m  $m  
Inventory  49  38 
Trade debtors  14  2 
Rent paid in advance  5  5 
PPE  400  400 
Total assets  468  445 
Trade creditors  4  10 
Bond liabilities  200  190 
Contributed equity  145  145 
Retained profits  119  100 
Total L and OE  468  445 
Note: All figures are given in millions of dollars ($m).
The cash flow from assets was:
Your friend is trying to find the net present value of a project. The project is expected to last for just one year with:
 a negative cash flow of $1 million initially (t=0), and
 a positive cash flow of $1.1 million in one year (t=1).
The project has a total required return of 10% pa due to its moderate level of undiversifiable risk.
Your friend is aware of the importance of opportunity costs and the time value of money, but he is unsure of how to find the NPV of the project.
He knows that the opportunity cost of investing the $1m in the project is the expected gain from investing the money in shares instead. Like the project, shares also have an expected return of 10% since they have moderate undiversifiable risk. This opportunity cost is $0.1m ##(=1m \times 10\%)## which occurs in one year (t=1).
He knows that the time value of money should be accounted for, and this can be done by finding the present value of the cash flows in one year.
Your friend has listed a few different ways to find the NPV which are written down below.
(I) ##1m + \dfrac{1.1m}{(1+0.1)^1} ##
(II) ##1m + \dfrac{1.1m}{(1+0.1)^1}  \dfrac{1m}{(1+0.1)^1} \times 0.1 ##
(III) ##1m + \dfrac{1.1m}{(1+0.1)^1}  \dfrac{1.1m}{(1+0.1)^1} \times 0.1 ##
(IV) ##1m + 1.1m  \dfrac{1.1m}{(1+0.1)^1} \times 0.1 ##
(V) ##1m + 1.1m  1.1m \times 0.1 ##
Which of the above calculations give the correct NPV? Select the most correct answer.
A young lady is trying to decide if she should attend university or not.
The young lady's parents say that she must attend university because otherwise all of her hard work studying and attending school during her childhood was a waste.
What's the correct way to classify this item from a capital budgeting perspective when trying to decide whether to attend university?
The hard work studying at school in her childhood should be classified as:
A young lady is trying to decide if she should attend university. Her friends say that she should go to university because she is more likely to meet a clever young man than if she begins full time work straight away.
What's the correct way to classify this item from a capital budgeting perspective when trying to find the Net Present Value of going to university rather than working?
The opportunity to meet a desirable future spouse should be classified as:
A man is thinking about taking a day off from his casual painting job to relax.
He just woke up early in the morning and he's about to call his boss to say that he won't be coming in to work.
But he's thinking about the hours that he could work today (in the future) which are:
A man has taken a day off from his casual painting job to relax.
It's the end of the day and he's thinking about the hours that he could have spent working (in the past) which are now:
What is the net present value (NPV) of undertaking a fulltime Australian undergraduate business degree as an Australian citizen? Only include the cash flows over the duration of the degree, ignore any benefits or costs of the degree after it's completed.
Assume the following:
 The degree takes 3 years to complete and all students pass all subjects.
 There are 2 semesters per year and 4 subjects per semester.
 University fees per subject per semester are $1,277, paid at the start of each semester. Fees are expected to stay constant for the next 3 years.
 There are 52 weeks per year.
 The first semester is just about to start (t=0). The first semester lasts for 19 weeks (t=0 to 19).
 The second semester starts immediately afterwards (t=19) and lasts for another 19 weeks (t=19 to 38).
 The summer holidays begin after the second semester ends and last for 14 weeks (t=38 to 52). Then the first semester begins the next year, and so on.
 Working full time at the grocery store instead of studying fulltime pays $20/hr and you can work 35 hours per week. Wages are paid at the end of each week.
 Fulltime students can work fulltime during the summer holiday at the grocery store for the same rate of $20/hr for 35 hours per week. Wages are paid at the end of each week.
 The discount rate is 9.8% pa. All rates and cash flows are real. Inflation is expected to be 3% pa. All rates are effective annual.
The NPV of costs from undertaking the university degree is:
Find the cash flow from assets (CFFA) of the following project.
One Year Mining Project Data  
Project life  1 year  
Initial investment in building mine and equipment  $9m  
Depreciation of mine and equipment over the year  $8m  
Kilograms of gold mined at end of year  1,000  
Sale price per kilogram  $0.05m  
Variable cost per kilogram  $0.03m  
Beforetax cost of closing mine at end of year  $4m  
Tax rate  30%  
Note 1: Due to the project, the firm also anticipates finding some rare diamonds which will give beforetax revenues of $1m at the end of the year.
Note 2: The land that will be mined actually has thermal springs and a family of koalas that could be sold to an ecotourist resort for an aftertax amount of $3m right now. However, if the mine goes ahead then this natural beauty will be destroyed.
Note 3: The mining equipment will have a book value of $1m at the end of the year for tax purposes. However, the equipment is expected to fetch $2.5m when it is sold.
Find the project's CFFA at time zero and one. Answers are given in millions of dollars ($m), with the first cash flow at time zero, and the second at time one.
Find the cash flow from assets (CFFA) of the following project.
Project Data  
Project life  2 years  
Initial investment in equipment  $6m  
Depreciation of equipment per year for tax purposes  $1m  
Unit sales per year  4m  
Sale price per unit  $8  
Variable cost per unit  $3  
Fixed costs per year, paid at the end of each year  $1.5m  
Tax rate  30%  
Note 1: The equipment will have a book value of $4m at the end of the project for tax purposes. However, the equipment is expected to fetch $0.9 million when it is sold at t=2.
Note 2: Due to the project, the firm will have to purchase $0.8m of inventory initially, which it will sell at t=1. The firm will buy another $0.8m at t=1 and sell it all again at t=2 with zero inventory left. The project will have no effect on the firm's current liabilities.
Find the project's CFFA at time zero, one and two. Answers are given in millions of dollars ($m).
Value the following business project to manufacture a new product.
Project Data  
Project life  2 yrs  
Initial investment in equipment  $6m  
Depreciation of equipment per year  $3m  
Expected sale price of equipment at end of project  $0.6m  
Unit sales per year  4m  
Sale price per unit  $8  
Variable cost per unit  $5  
Fixed costs per year, paid at the end of each year  $1m  
Interest expense per year  0  
Tax rate  30%  
Weighted average cost of capital after tax per annum  10%  
Notes
 The firm's current assets and current liabilities are $3m and $2m respectively right now. This net working capital will not be used in this project, it will be used in other unrelated projects.
Due to the project, current assets (mostly inventory) will grow by $2m initially (at t = 0), and then by $0.2m at the end of the first year (t=1).
Current liabilities (mostly trade creditors) will increase by $0.1m at the end of the first year (t=1).
At the end of the project, the net working capital accumulated due to the project can be sold for the same price that it was bought.  The project cost $0.5m to research which was incurred one year ago.
Assumptions
 All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
 All rates and cash flows are real. The inflation rate is 3% pa.
 All rates are given as effective annual rates.
 The business considering the project is run as a 'sole tradership' (run by an individual without a company) and is therefore eligible for a 50% capital gains tax discount when the equipment is sold, as permitted by the Australian Tax Office.
What is the expected net present value (NPV) of the project?
One year ago you bought $100,000 of shares partly funded using a margin loan. The margin loan size was $70,000 and the other $30,000 was your own wealth or 'equity' in the share assets.
The interest rate on the margin loan was 7.84% pa.
Over the year, the shares produced a dividend yield of 4% pa and a capital gain of 5% pa.
What was the total return on your wealth? Ignore taxes, assume that all cash flows (interest payments and dividends) were paid and received at the end of the year, and all rates above are effective annual rates.
Hint: Remember that wealth in this context is your equity (E) in the house asset (V = D+E) which is funded by the loan (D) and your deposit or equity (E).
Interest expense (IntExp) is an important part of a company's income statement (or 'profit and loss' or 'statement of financial performance').
How does an accountant calculate the annual interest expense of a fixedcoupon bond that has a liquid secondary market? Select the most correct answer:
Annual interest expense is equal to:
Which one of the following will increase the Cash Flow From Assets in this year for a taxpaying firm, all else remaining constant?
Which one of the following will decrease net income (NI) but increase cash flow from assets (CFFA) in this year for a taxpaying firm, all else remaining constant?
Remember:
###NI=(RevCOGSFCDeprIntExp).(1t_c )### ###CFFA=NI+DeprCapEx  ΔNWC+IntExp###A manufacturing company is considering a new project in the more risky services industry. The cash flows from assets (CFFA) are estimated for the new project, with interest expense excluded from the calculations. To get the levered value of the project, what should these unlevered cash flows be discounted by?
Assume that the manufacturing firm has a target debttoassets ratio that it sticks to.
There are many ways to calculate a firm's free cash flow (FFCF), also called cash flow from assets (CFFA). Some include the annual interest tax shield in the cash flow and some do not.
Which of the below FFCF formulas include the interest tax shield in the cash flow?
###(1) \quad FFCF=NI + Depr  CapEx ΔNWC + IntExp### ###(2) \quad FFCF=NI + Depr  CapEx ΔNWC + IntExp.(1t_c)### ###(3) \quad FFCF=EBIT.(1t_c )+ Depr CapEx ΔNWC+IntExp.t_c### ###(4) \quad FFCF=EBIT.(1t_c) + Depr CapEx ΔNWC### ###(5) \quad FFCF=EBITDA.(1t_c )+Depr.t_c CapEx ΔNWC+IntExp.t_c### ###(6) \quad FFCF=EBITDA.(1t_c )+Depr.t_c CapEx ΔNWC### ###(7) \quad FFCF=EBITTax + Depr  CapEx ΔNWC### ###(8) \quad FFCF=EBITTax + Depr  CapEx ΔNWCIntExp.t_c### ###(9) \quad FFCF=EBITDATax  CapEx ΔNWC### ###(10) \quad FFCF=EBITDATax  CapEx ΔNWCIntExp.t_c###The formulas for net income (NI also called earnings), EBIT and EBITDA are given below. Assume that depreciation and amortisation are both represented by 'Depr' and that 'FC' represents fixed costs such as rent.
###NI=(Rev  COGS  Depr  FC  IntExp).(1t_c )### ###EBIT=Rev  COGS  FCDepr### ###EBITDA=Rev  COGS  FC### ###Tax =(Rev  COGS  Depr  FC  IntExp).t_c= \dfrac{NI.t_c}{1t_c}###A retail furniture company buys furniture wholesale and distributes it through its retail stores. The owner believes that she has some good ideas for making stylish new furniture. She is considering a project to buy a factory and employ workers to manufacture the new furniture she's designed. Furniture manufacturing has more systematic risk than furniture retailing.
Her furniture retailing firm's aftertax WACC is 20%. Furniture manufacturing firms have an aftertax WACC of 30%. Both firms are optimally geared. Assume a classical tax system.
Which method(s) will give the correct valuation of the new furnituremaking project? Select the most correct answer.
The US firm Google operates in the online advertising business. In 2011 Google bought Motorola Mobility which manufactures mobile phones.
Assume the following:
 Google had a 10% aftertax weighted average cost of capital (WACC) before it bought Motorola.
 Motorola had a 20% aftertax WACC before it merged with Google.
 Google and Motorola have the same level of gearing.
 Both companies operate in a classical tax system.
You are a manager at Motorola. You must value a project for making mobile phones. Which method(s) will give the correct valuation of the mobile phone manufacturing project? Select the most correct answer.
The mobile phone manufacturing project's:
A method commonly seen in textbooks for calculating a levered firm's free cash flow (FFCF, or CFFA) is the following:
###\begin{aligned} FFCF &= (Rev  COGS  Depr  FC  IntExp)(1t_c) + \\ &\space\space\space+ Depr  CapEx \Delta NWC + IntExp(1t_c) \\ \end{aligned}###
One method for calculating a firm's free cash flow (FFCF, or CFFA) is to ignore interest expense. That is, pretend that interest expense ##(IntExp)## is zero:
###\begin{aligned} FFCF &= (Rev  COGS  Depr  FC  IntExp)(1t_c) + Depr  CapEx \Delta NWC + IntExp \\ &= (Rev  COGS  Depr  FC  0)(1t_c) + Depr  CapEx \Delta NWC  0\\ \end{aligned}###
Question 413 CFFA, interest tax shield, depreciation tax shield
There are many ways to calculate a firm's free cash flow (FFCF), also called cash flow from assets (CFFA).
One method is to use the following formulas to transform net income (NI) into FFCF including interest and depreciation tax shields:
###FFCF=NI + Depr  CapEx ΔNWC + IntExp###
###NI=(Rev  COGS  Depr  FC  IntExp).(1t_c )###
Another popular method is to use EBITDA rather than net income. EBITDA is defined as:
###EBITDA=Rev  COGS  FC###
One of the below formulas correctly calculates FFCF from EBITDA, including interest and depreciation tax shields, giving an identical answer to that above. Which formula is correct?
Question 370 capital budgeting, NPV, interest tax shield, WACC, CFFA
Project Data  
Project life  2 yrs  
Initial investment in equipment  $600k  
Depreciation of equipment per year  $250k  
Expected sale price of equipment at end of project  $200k  
Revenue per job  $12k  
Variable cost per job  $4k  
Quantity of jobs per year  120  
Fixed costs per year, paid at the end of each year  $100k  
Interest expense in first year (at t=1)  $16.091k  
Interest expense in second year (at t=2)  $9.711k  
Tax rate  30%  
Government treasury bond yield  5%  
Bank loan debt yield  6%  
Levered cost of equity  12.5%  
Market portfolio return  10%  
Beta of assets  1.24  
Beta of levered equity  1.5  
Firm's and project's debttoequity ratio  25%  
Notes
 The project will require an immediate purchase of $50k of inventory, which will all be sold at cost when the project ends. Current liabilities are negligible so they can be ignored.
Assumptions
 The debttoequity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debttoequity ratio. Note that interest expense is different in each year.
 Thousands are represented by 'k' (kilo).
 All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
 All rates and cash flows are nominal. The inflation rate is 2% pa.
 All rates are given as effective annual rates.
 The 50% capital gains tax discount is not available since the project is undertaken by a firm, not an individual.
What is the net present value (NPV) of the project?
Select the most correct statement from the following.
'Chartists', also known as 'technical traders', believe that:
Fundamentalists who analyse company financial reports and news announcements (but who don't have inside information) will make positive abnormal returns if:
Question 100 market efficiency, technical analysis, joint hypothesis problem
A company selling charting and technical analysis software claims that independent academic studies have shown that its software makes significantly positive abnormal returns. Assuming the claim is true, which statement(s) are correct?
(I) Weak form market efficiency is broken.
(II) Semistrong form market efficiency is broken.
(III) Strong form market efficiency is broken.
(IV) The asset pricing model used to measure the abnormal returns (such as the CAPM) had misspecification error so the returns may not be abnormal but rather fair for the level of risk.
Select the most correct response:
Question 119 market efficiency, fundamental analysis, joint hypothesis problem
Your friend claims that by reading 'The Economist' magazine's economic news articles, she can identify shares that will have positive abnormal expected returns over the next 2 years. Assuming that her claim is true, which statement(s) are correct?
(i) Weak form market efficiency is broken.
(ii) Semistrong form market efficiency is broken.
(iii) Strong form market efficiency is broken.
(iv) The asset pricing model used to measure the abnormal returns (such as the CAPM) is either wrong (misspecification error) or is measured using the wrong inputs (data errors) so the returns may not be abnormal but rather fair for the level of risk.
Select the most correct response:
Question 338 market efficiency, CAPM, opportunity cost, technical analysis
A man inherits $500,000 worth of shares.
He believes that by learning the secrets of trading, keeping up with the financial news and doing complex trend analysis with charts that he can quit his job and become a selfemployed day trader in the equities markets.
What is the expected gain from doing this over the first year? Measure the net gain in wealth received at the end of this first year due to the decision to become a day trader. Assume the following:
 He earns $60,000 pa in his current job, paid in a lump sum at the end of each year.
 He enjoys examining share price graphs and day trading just as much as he enjoys his current job.
 Stock markets are weak form and semistrong form efficient.
 He has no inside information.
 He makes 1 trade every day and there are 250 trading days in the year. Trading costs are $20 per trade. His broker invoices him for the trading costs at the end of the year.
 The shares that he currently owns and the shares that he intends to trade have the same level of systematic risk as the market portfolio.
 The market portfolio's expected return is 10% pa.
Measure the net gain over the first year as an expected wealth increase at the end of the year.
A person is thinking about borrowing $100 from the bank at 7% pa and investing it in shares with an expected return of 10% pa. One year later the person will sell the shares and pay back the loan in full. Both the loan and the shares are fairly priced.
What is the Net Present Value (NPV) of this one year investment? Note that you are asked to find the present value (##V_0##), not the value in one year (##V_1##).
Question 48 IRR, NPV, bond pricing, premium par and discount bonds, market efficiency
The theory of fixed interest bond pricing is an application of the theory of Net Present Value (NPV). Also, a 'fairly priced' asset is not over or underpriced. Buying or selling a fairly priced asset has an NPV of zero.
Considering this, which of the following statements is NOT correct?
A managed fund charges fees based on the amount of money that you keep with them. The fee is 2% of the startofyear amount, but it is paid at the end of every year.
This fee is charged regardless of whether the fund makes gains or losses on your money.
The fund offers to invest your money in shares which have an expected return of 10% pa before fees.
You are thinking of investing $100,000 in the fund and keeping it there for 40 years when you plan to retire.
What is the Net Present Value (NPV) of investing your money in the fund? Note that the question is not asking how much money you will have in 40 years, it is asking: what is the NPV of investing in the fund? Assume that:
 The fund has no private information.
 Markets are weak and semistrong form efficient.
 The fund's transaction costs are negligible.
 The cost and trouble of investing your money in shares by yourself, without the managed fund, is negligible.
A company advertises an investment costing $1,000 which they say is underpriced. They say that it has an expected total return of 15% pa, but a required return of only 10% pa. Assume that there are no dividend payments so the entire 15% total return is all capital return.
Assuming that the company's statements are correct, what is the NPV of buying the investment if the 15% return lasts for the next 100 years (t=0 to 100), then reverts to 10% pa after that time? Also, what is the NPV of the investment if the 15% return lasts forever?
In both cases, assume that the required return of 10% remains constant. All returns are given as effective annual rates.
The answer choices below are given in the same order (15% for 100 years, and 15% forever):
A managed fund charges fees based on the amount of money that you keep with them. The fee is 2% of the endofyear amount, paid at the end of every year.
This fee is charged regardless of whether the fund makes gains or losses on your money.
The fund offers to invest your money in shares which have an expected return of 10% pa before fees.
You are thinking of investing $100,000 in the fund and keeping it there for 40 years when you plan to retire.
How much money do you expect to have in the fund in 40 years? Also, what is the future value of the fees that the fund expects to earn from you? Give both amounts as future values in 40 years. Assume that:
 The fund has no private information.
 Markets are weak and semistrong form efficient.
 The fund's transaction costs are negligible.
 The cost and trouble of investing your money in shares by yourself, without the managed fund, is negligible.
 The fund invests its fees in the same companies as it invests your funds in, but with no fees.
The below answer choices list your expected wealth in 40 years and then the fund's expected wealth in 40 years.
The average weekly earnings of an Australian adult worker before tax was $1,542.40 per week in November 2014 according to the Australian Bureau of Statistics. Therefore average annual earnings before tax were $80,204.80 assuming 52 weeks per year. Personal income tax rates published by the Australian Tax Office are reproduced for the 20142015 financial year in the table below:
Taxable income  Tax on this income 

0 – $18,200  Nil 
$18,201 – $37,000  19c for each $1 over $18,200 
$37,001 – $80,000  $3,572 plus 32.5c for each $1 over $37,000 
$80,001 – $180,000  $17,547 plus 37c for each $1 over $80,000 
$180,001 and over  $54,547 plus 45c for each $1 over $180,000 
The above rates do not include the Medicare levy of 2%. Exclude the Medicare levy from your calculations
How much personal income tax would you have to pay per year if you earned $80,204.80 per annum beforetax?
Question 449 personal tax on dividends, classical tax system
A small private company has a single shareholder. This year the firm earned a $100 profit before tax. All of the firm's after tax profits will be paid out as dividends to the owner.
The corporate tax rate is 30% and the sole shareholder's personal marginal tax rate is 45%.
The United States' classical tax system applies because the company generates all of its income in the US and pays corporate tax to the Internal Revenue Service. The shareholder is also an American for tax purposes.
What will be the personal tax payable by the shareholder and the corporate tax payable by the company?
Question 624 franking credit, personal tax on dividends, imputation tax system, no explanation
Which of the following statements about Australian franking credits is NOT correct? Franking credits:
Question 448 franking credit, personal tax on dividends, imputation tax system
A small private company has a single shareholder. This year the firm earned a $100 profit before tax. All of the firm's after tax profits will be paid out as dividends to the owner.
The corporate tax rate is 30% and the sole shareholder's personal marginal tax rate is 45%.
The Australian imputation tax system applies because the company generates all of its income in Australia and pays corporate tax to the Australian Tax Office. Therefore all of the company's dividends are fully franked. The sole shareholder is an Australian for tax purposes and can therefore use the franking credits to offset his personal income tax liability.
What will be the personal tax payable by the shareholder and the corporate tax payable by the company?
A company announces that it will pay a dividend, as the market expected. The company's shares trade on the stock exchange which is open from 10am in the morning to 4pm in the afternoon each weekday. When would the share price be expected to fall by the amount of the dividend? Ignore taxes.
The share price is expected to fall during the:
Currently, a mining company has a share price of $6 and pays constant annual dividends of $0.50. The next dividend will be paid in 1 year. Suddenly and unexpectedly the mining company announces that due to higher than expected profits, all of these windfall profits will be paid as a special dividend of $0.30 in 1 year.
If investors believe that the windfall profits and dividend is a oneoff event, what will be the new share price? If investors believe that the additional dividend is actually permanent and will continue to be paid, what will be the new share price? Assume that the required return on equity is unchanged. Choose from the following, where the first share price includes the oneoff increase in earnings and dividends for the first year only ##(P_\text{0 oneoff})## , and the second assumes that the increase is permanent ##(P_\text{0 permanent})##:
Note: When a firm makes excess profits they sometimes pay them out as special dividends. Special dividends are just like ordinary dividends but they are oneoff and investors do not expect them to continue, unlike ordinary dividends which are expected to persist.
A mining firm has just discovered a new mine. So far the news has been kept a secret.
The net present value of digging the mine and selling the minerals is $250 million, but $500 million of new equity and $300 million of new bonds will need to be issued to fund the project and buy the necessary plant and equipment.
The firm will release the news of the discovery and equity and bond raising to shareholders simultaneously in the same announcement. The shares and bonds will be issued shortly after.
Once the announcement is made and the new shares and bonds are issued, what is the expected increase in the value of the firm's assets ##(\Delta V)##, market capitalisation of debt ##(\Delta D)## and market cap of equity ##(\Delta E)##? Assume that markets are semistrong form efficient.
The triangle symbol ##\Delta## is the Greek letter capital delta which means change or increase in mathematics.
Ignore the benefit of interest tax shields from having more debt.
Remember: ##\Delta V = \Delta D+ \Delta E##
Question 568 rights issue, capital raising, capital structure
A company conducts a 1 for 5 rights issue at a subscription price of $7 when the preannouncement stock price was $10. What is the percentage change in the stock price and the number of shares outstanding? The answers are given in the same order. Ignore all taxes, transaction costs and signalling effects.
Question 625 dividend reinvestment plan, capital raising
Which of the following statements about dividend reinvestment plans (DRP's) is NOT correct?
In late 2003 the listed bank ANZ announced a 2for11 rights issue to fund the takeover of New Zealand bank NBNZ. Below is the chronology of events:
 23/10/2003. Share price closes at $18.30.
 24/10/2003. 2for11 rights issue announced at a subscription price of $13. The proceeds of the rights issue will be used to acquire New Zealand bank NBNZ. Trading halt announced in morning before market opens.
 28/10/2003. Trading halt lifted. Last (and only) day that shares trade cumrights. Share price opens at $18.00 and closes at $18.14.
 29/10/2003. Shares trade exrights.
All things remaining equal, what would you expect ANZ's stock price to open at on the first day that it trades exrights (29/10/2003)? Ignore the time value of money since time is negligibly short. Also ignore taxes.
Question 708 continuously compounding rate, continuously compounding rate conversion
Convert a 10% continuously compounded annual rate ##(r_\text{cc annual})## into an effective annual rate ##(r_\text{eff annual})##. The equivalent effective annual rate is:
Which of the following interest rate quotes is NOT equivalent to a 10% effective annual rate of return? Assume that each year has 12 months, each month has 30 days, each day has 24 hours, each hour has 60 minutes and each minute has 60 seconds. APR stands for Annualised Percentage Rate.
Question 710 continuously compounding rate, continuously compounding rate conversion
A continuously compounded monthly return of 1% ##(r_\text{cc monthly})## is equivalent to a continuously compounded annual return ##(r_\text{cc annual})## of:
An effective monthly return of 1% ##(r_\text{eff monthly})## is equivalent to an effective annual return ##(r_\text{eff annual})## of:
Which of the following quantities is commonly assumed to be normally distributed?
The below three graphs show probability density functions (PDF) of three different random variables Red, Green and Blue.
Which of the below statements is NOT correct?
The symbol ##\text{GDR}_{0\rightarrow 1}## represents a stock's gross discrete return per annum over the first year. ##\text{GDR}_{0\rightarrow 1} = P_1/P_0##. The subscript indicates the time period that the return is mentioned over. So for example, ##\text{AAGDR}_{1 \rightarrow 3}## is the arithmetic average GDR measured over the two year period from years 1 to 3, but it is expressed as a per annum rate.
Which of the below statements about the arithmetic and geometric average GDR is NOT correct?
Question 722 mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate
Here is a table of stock prices and returns. Which of the statements below the table is NOT correct?
Price and Return Population Statistics  
Time  Prices  LGDR  GDR  NDR 
0  100  
1  50  0.6931  0.5  0.5 
2  100  0.6931  2  1 
Arithmetic average  0  1.25  0.25  
Arithmetic standard deviation  0.6931  0.75  0.75  
The CAPM can be used to find a business's expected opportunity cost of capital:
###r_i=r_f+β_i (r_mr_f)###
What should be used as the risk free rate ##r_f##?
A stock has a beta of 1.5. The market's expected total return is 10% pa and the risk free rate is 5% pa, both given as effective annual rates.
Over the last year, bad economic news was released showing a higher chance of recession. Over this time the share market fell by 1%. The risk free rate was unchanged.
What do you think was the stock's historical return over the last year, given as an effective annual rate?
A stock has a beta of 1.5. The market's expected total return is 10% pa and the risk free rate is 5% pa, both given as effective annual rates.
In the last 5 minutes, bad economic news was released showing a higher chance of recession. Over this time the share market fell by 1%. The risk free rate was unchanged.
What do you think was the stock's historical return over the last 5 minutes, given as an effective 5 minute rate?
A stock has a beta of 1.5. The market's expected total return is 10% pa and the risk free rate is 5% pa, both given as effective annual rates.
What do you think will be the stock's expected return over the next year, given as an effective annual rate?
Assets A, B, M and ##r_f## are shown on the graphs above. Asset M is the market portfolio and ##r_f## is the risk free yield on government bonds. Assume that investors can borrow and lend at the risk free rate. Which of the below statements is NOT correct?
Find the cash flow from assets (CFFA) of the following project.
Project Data  
Project life  2 years 
Initial investment in equipment  $8m 
Depreciation of equipment per year for tax purposes  $3m 
Unit sales per year  10m 
Sale price per unit  $9 
Variable cost per unit  $4 
Fixed costs per year, paid at the end of each year  $2m 
Tax rate  30% 
Note 1: Due to the project, the firm will have to purchase $40m of inventory initially (at t=0). Half of this inventory will be sold at t=1 and the other half at t=2.
Note 2: The equipment will have a book value of $2m at the end of the project for tax purposes. However, the equipment is expected to fetch $1m when it is sold. Assume that the full capital loss is taxdeductible and taxed at the full corporate tax rate.
Note 3: The project will be fully funded by equity which investors will expect to pay dividends totaling $10m at the end of each year.
Find the project's CFFA at time zero, one and two. Answers are given in millions of dollars ($m).
Question 626 cross currency interest rate parity, foreign exchange rate, forward foreign exchange rate
The Australian cash rate is expected to be 2% pa over the next one year, while the Japanese cash rate is expected to be 0% pa, both given as nominal effective annual rates. The current exchange rate is 100 JPY per AUD.
What is the implied 1 year forward foreign exchange rate?
Question 667 forward foreign exchange rate, foreign exchange rate, cross currency interest rate parity, no explanation
The Australian cash rate is expected to be 2% pa over the next one year, while the US cash rate is expected to be 0% pa, both given as nominal effective annual rates. The current exchange rate is 0.73 USD per AUD.
What is the implied 1 year USD per AUD forward foreign exchange rate?
Question 246 foreign exchange rate, forward foreign exchange rate, cross currency interest rate parity
Suppose the Australian cash rate is expected to be 8.15% pa and the US federal funds rate is expected to be 3.00% pa over the next 2 years, both given as nominal effective annual rates. The current exchange rate is at parity, so 1 USD = 1 AUD.
What is the implied 2 year forward foreign exchange rate?
A stock's required total return will increase when its:
Question 657 systematic and idiosyncratic risk, CAPM, no explanation
A stock's required total return will decrease when its:
Which of the following is NOT a valid method for estimating the beta of a company's stock? Assume that markets are efficient, a long history of past data is available, the stock possesses idiosyncratic and market risk. The variances and standard deviations below denote total risks.
Question 566 capital structure, capital raising, rights issue, on market repurchase, dividend, stock split, bonus issue
A company's share price fell by 20% and its number of shares rose by 25%. Assume that there are no taxes, no signalling effects and no transaction costs.
Which one of the following corporate events may have happened?
Question 668 buy and hold, market efficiency, idiom
A quote from the famous investor Warren Buffet: "Much success can be attributed to inactivity. Most investors cannot resist the temptation to constantly buy and sell."
Buffet is referring to the buyandhold strategy which is to buy and never sell shares. Which of the following is a disadvantage of a buyandhold strategy? Assume that share markets are semistrong form efficient. Which of the following is NOT an advantage of the strict buyandhold strategy? A disadvantage of the buyandhold strategy is that it reduces:
To value a business's assets, the free cash flow of the firm (FCFF, also called CFFA) needs to be calculated. This requires figures from the firm's income statement and balance sheet. For what figures is the balance sheet needed? Note that the balance sheet is sometimes also called the statement of financial position.
Let the variance of returns for a share per month be ##\sigma_\text{monthly}^2##.
What is the formula for the variance of the share's returns per year ##(\sigma_\text{yearly}^2)##?
Assume that returns are independently and identically distributed (iid) so they have zero auto correlation, meaning that if the return was higher than average today, it does not indicate that the return tomorrow will be higher or lower than average.
The standard deviation and variance of a stock's annual returns are calculated over a number of years. The units of the returns are percent per annum ##(\% pa)##.
What are the units of the standard deviation ##(\sigma)## and variance ##(\sigma^2)## of returns respectively?
Hint: Visit Wikipedia to understand the difference between percentage points ##(\text{pp})## and percent ##(\%)##.
Mr Blue, Miss Red and Mrs Green are people with different utility functions.
Note that a fair gamble is a bet that has an expected value of zero, such as paying $0.50 to win $1 in a coin flip with heads or nothing if it lands tails. Fairly priced insurance is when the expected present value of the insurance premiums is equal to the expected loss from the disaster that the insurance protects against, such as the cost of rebuilding a home after a catastrophic fire.
Which of the following statements is NOT correct?
Question 704 utility, risk aversion, utility function, gamble
Mr Blue, Miss Red and Mrs Green are people with different utility functions.
Each person has $256 of initial wealth. A coin toss game is offered to each person at a casino where the player can win or lose $256. Each player can flip a coin and if they flip heads, they receive $256. If they flip tails then they will lose $256. Which of the following statements is NOT correct?
Question 703 utility, risk aversion, utility function, gamble
Mr Blue, Miss Red and Mrs Green are people with different utility functions.
Each person has $500 of initial wealth. A coin toss game is offered to each person at a casino where the player can win or lose $500. Each player can flip a coin and if they flip heads, they receive $500. If they flip tails then they will lose $500. Which of the following statements is NOT correct?