# Fight Finance

#### CoursesTagsRandomAllRecentScores

 Scores keithphw $6,001.61 Zin$1,492.43 Carolll $1,403.33 Visitor$1,268.61 cuiting $1,249.70 Jade$1,135.80 Skywalke... $1,070.00 mm11$1,050.33 ninalee $1,039.70 Visitor$1,024.70 Visitor $1,005.61 Visitor$950.00 victor $934.70 zy$899.70 Doris $889.70 Visitor$840.00 Visitor $840.00 Emma Lu$810.00 trungbin $803.09 alison$771.70

A European company just issued two bonds, a

• 1 year zero coupon bond at a yield of 8% pa, and a
• 2 year zero coupon bond at a yield of 10% pa.

What is the company's forward rate over the second year (from t=1 to t=2)? Give your answer as an effective annual rate, which is how the above bond yields are quoted.

An Australian company just issued two bonds:

• A 1 year zero coupon bond at a yield of 10% pa, and
• A 2 year zero coupon bond at a yield of 8% pa.

What is the forward rate on the company's debt from years 1 to 2? Give your answer as an APR compounding every 6 months, which is how the above bond yields are quoted.

In the dividend discount model:

$$P_0 = \dfrac{C_1}{r-g}$$

The return $r$ is supposed to be the:

Let the variance of returns for a share per month be $\sigma_\text{monthly}^2$.

What is the formula for the variance of the share's returns per year $(\sigma_\text{yearly}^2)$?

Assume that returns are independently and identically distributed (iid) so they have zero auto correlation, meaning that if the return was higher than average today, it does not indicate that the return tomorrow will be higher or lower than average.

Investors expect Australia's central bank, the RBA, to reduce the policy rate at their next meeting due to fears that the economy is slowing. Then unexpectedly, the policy rate is actually kept unchanged.

What do you expect to happen to Australia's exchange rate?

There are many ways to calculate a firm's free cash flow (FFCF), also called cash flow from assets (CFFA). Some include the annual interest tax shield in the cash flow and some do not.

Which of the below FFCF formulas include the interest tax shield in the cash flow?

$$(1) \quad FFCF=NI + Depr - CapEx -ΔNWC + IntExp$$ $$(2) \quad FFCF=NI + Depr - CapEx -ΔNWC + IntExp.(1-t_c)$$ $$(3) \quad FFCF=EBIT.(1-t_c )+ Depr- CapEx -ΔNWC+IntExp.t_c$$ $$(4) \quad FFCF=EBIT.(1-t_c) + Depr- CapEx -ΔNWC$$ $$(5) \quad FFCF=EBITDA.(1-t_c )+Depr.t_c- CapEx -ΔNWC+IntExp.t_c$$ $$(6) \quad FFCF=EBITDA.(1-t_c )+Depr.t_c- CapEx -ΔNWC$$ $$(7) \quad FFCF=EBIT-Tax + Depr - CapEx -ΔNWC$$ $$(8) \quad FFCF=EBIT-Tax + Depr - CapEx -ΔNWC-IntExp.t_c$$ $$(9) \quad FFCF=EBITDA-Tax - CapEx -ΔNWC$$ $$(10) \quad FFCF=EBITDA-Tax - CapEx -ΔNWC-IntExp.t_c$$

The formulas for net income (NI also called earnings), EBIT and EBITDA are given below. Assume that depreciation and amortisation are both represented by 'Depr' and that 'FC' represents fixed costs such as rent.

$$NI=(Rev - COGS - Depr - FC - IntExp).(1-t_c )$$ $$EBIT=Rev - COGS - FC-Depr$$ $$EBITDA=Rev - COGS - FC$$ $$Tax =(Rev - COGS - Depr - FC - IntExp).t_c= \dfrac{NI.t_c}{1-t_c}$$

The working capital decision primarily affects which part of a business?

Question 449  personal tax on dividends, classical tax system

A small private company has a single shareholder. This year the firm earned a $100 profit before tax. All of the firm's after tax profits will be paid out as dividends to the owner. The corporate tax rate is 30% and the sole shareholder's personal marginal tax rate is 45%. The United States' classical tax system applies because the company generates all of its income in the US and pays corporate tax to the Internal Revenue Service. The shareholder is also an American for tax purposes. What will be the personal tax payable by the shareholder and the corporate tax payable by the company? Which of the below formulas gives the payoff $(f)$ at maturity $(T)$ from being long a call option? Let the underlying asset price at maturity be $S_T$ and the exercise price be $X_T$. The following cash flows are expected: • A perpetuity of yearly payments of$30, with the first payment in 5 years (first payment at t=5, which continues every year after that forever).
• One payment of \$100 in 6 years and 3 months (t=6.25).

What is the NPV of the cash flows if the discount rate is 10% given as an effective annual rate?