Fight Finance

Courses  Tags  Random  All  Recent  Scores

Scores
keithphw$6,001.61
Yizhou$489.18
Visitor$442.43
Visitor$370.00
allen$340.00
Visitor$260.00
Donnal$190.00
Visitor$160.00
Visitor$150.00
Visitor$120.00
Visitor$119.09
Visitor$110.00
Visitor$100.00
Visitor$90.00
Visitor$60.00
Visitor$60.00
Visitor$56.09
Visitor$50.00
Koushik ...$43.45
Visitor$40.09
 

Question 353  income and capital returns, inflation, real and nominal returns and cash flows, real estate

A residential investment property has an expected nominal total return of 6% pa and nominal capital return of 3% pa.

Inflation is expected to be 2% pa. All rates are given as effective annual rates.

What are the property's expected real total, capital and income returns? The answer choices below are given in the same order.



Question 155  inflation, real and nominal returns and cash flows, Loan, effective rate conversion

You are a banker about to grant a 2 year loan to a customer. The loan's principal and interest will be repaid in a single payment at maturity, sometimes called a zero-coupon loan, discount loan or bullet loan.

You require a real return of 6% pa over the two years, given as an effective annual rate. Inflation is expected to be 2% this year and 4% next year, both given as effective annual rates.

You judge that the customer can afford to pay back $1,000,000 in 2 years, given as a nominal cash flow. How much should you lend to her right now?



Question 452  limited liability, expected and historical returns

What is the lowest and highest expected share price and expected return from owning shares in a company over a finite period of time?

Let the current share price be ##p_0##, the expected future share price be ##p_1##, the expected future dividend be ##d_1## and the expected return be ##r##. Define the expected return as:

##r=\dfrac{p_1-p_0+d_1}{p_0} ##

The answer choices are stated using inequalities. As an example, the first answer choice "(a) ##0≤p<∞## and ##0≤r< 1##", states that the share price must be larger than or equal to zero and less than positive infinity, and that the return must be larger than or equal to zero and less than one.



Question 467  book and market values

Which of the following statements about book and market equity is NOT correct?



Question 443  corporate financial decision theory, investment decision, financing decision, working capital decision, payout policy

Business people make lots of important decisions. Which of the following is the most important long term decision?



Question 216  DDM

A stock just paid its annual dividend of $9. The share price is $60. The required return of the stock is 10% pa as an effective annual rate.

What is the implied growth rate of the dividend per year?



Question 161  DDM

A share just paid its semi-annual dividend of $10. The dividend is expected to grow at 2% every 6 months forever. This 2% growth rate is an effective 6 month rate. Therefore the next dividend will be $10.20 in six months. The required return of the stock 10% pa, given as an effective annual rate.

What is the price of the share now?



Question 39  DDM, perpetuity with growth

A stock is expected to pay the following dividends:

Cash Flows of a Stock
Time (yrs) 0 1 2 3 4 ...
Dividend ($) 0.00 1.00 1.05 1.10 1.15 ...
 

After year 4, the annual dividend will grow in perpetuity at 5% pa, so;

  • the dividend at t=5 will be $1.15(1+0.05),
  • the dividend at t=6 will be $1.15(1+0.05)^2, and so on.

The required return on the stock is 10% pa. Both the growth rate and required return are given as effective annual rates. What is the current price of the stock?



Question 41  DDM, income and capital returns

The following is the Dividend Discount Model (DDM) used to price stocks:

### P_0 = \frac{d_1}{r-g} ###

Assume that the assumptions of the DDM hold and that the time period is measured in years.

Which of the following is equal to the expected dividend in 3 years, ## d_3 ##?



Question 158  DDM, income and capital returns

The following equation is the Dividend Discount Model, also known as the 'Gordon Growth Model' or the 'Perpetuity with growth' equation.

###p_0=\frac{d_1}{r_\text{eff}-g_\text{eff}}###

Which expression is NOT equal to the expected capital return?



Question 270  real estate, DDM, effective rate conversion

You own an apartment which you rent out as an investment property.

What is the price of the apartment using discounted cash flow (DCF, same as NPV) valuation?

Assume that:

  • You just signed a contract to rent the apartment out to a tenant for the next 12 months at $2,000 per month, payable in advance (at the start of the month, t=0). The tenant is just about to pay you the first $2,000 payment.
  • The contract states that monthly rental payments are fixed for 12 months. After the contract ends, you plan to sign another contract but with rental payment increases of 3%. You intend to do this every year.
    So rental payments will increase at the start of the 13th month (t=12) to be $2,060 (=2,000(1+0.03)), and then they will be constant for the next 12 months.
    Rental payments will increase again at the start of the 25th month (t=24) to be $2,121.80 (=2,000(1+0.03)2), and then they will be constant for the next 12 months until the next year, and so on.
  • The required return of the apartment is 8.732% pa, given as an effective annual rate.
  • Ignore all taxes, maintenance, real estate agent, council and strata fees, periods of vacancy and other costs. Assume that the apartment will last forever and so will the rental payments.



Question 465  NPV, perpetuity

The boss of WorkingForTheManCorp has a wicked (and unethical) idea. He plans to pay his poor workers one week late so that he can get more interest on his cash in the bank.

Every week he is supposed to pay his 1,000 employees $1,000 each. So $1 million is paid to employees every week.

The boss was just about to pay his employees today, until he thought of this idea so he will actually pay them one week (7 days) later for the work they did last week and every week in the future, forever.

Bank interest rates are 10% pa, given as a real effective annual rate. So ##r_\text{eff annual, real} = 0.1## and the real effective weekly rate is therefore ##r_\text{eff weekly, real} = (1+0.1)^{1/52}-1 = 0.001834569##

All rates and cash flows are real, the inflation rate is 3% pa and there are 52 weeks per year. The boss will always pay wages one week late. The business will operate forever with constant real wages and the same number of employees.

What is the net present value (NPV) of the boss's decision to pay later?



Question 60  pay back period

The required return of a project is 10%, given as an effective annual rate.

What is the payback period of the project in years?

Assume that the cash flows shown in the table are received smoothly over the year. So the $121 at time 2 is actually earned smoothly from t=1 to t=2.

Project Cash Flows
Time (yrs) Cash flow ($)
0 -100
1 11
2 121
 



Question 201  DDM, income and capital returns

The following is the Dividend Discount Model (DDM) used to price stocks:

###P_0=\dfrac{C_1}{r-g}###

If the assumptions of the DDM hold, which one of the following statements is NOT correct? The long term expected:



Question 40  DDM, perpetuity with growth

A stock is expected to pay the following dividends:

Cash Flows of a Stock
Time (yrs) 0 1 2 3 4 ...
Dividend ($) 0.00 1.00 1.05 1.10 1.15 ...
 

After year 4, the annual dividend will grow in perpetuity at 5% pa, so;

  • the dividend at t=5 will be $1.15(1+0.05),
  • the dividend at t=6 will be $1.15(1+0.05)^2, and so on.

The required return on the stock is 10% pa. Both the growth rate and required return are given as effective annual rates.

What will be the price of the stock in three and a half years (t = 3.5)?



Question 148  DDM, income and capital returns

The following equation is the Dividend Discount Model, also known as the 'Gordon Growth Model' or the 'Perpetuity with growth' equation.

### p_0 = \frac{d_1}{r - g} ###

Which expression is NOT equal to the expected dividend yield?



Question 50  DDM, stock pricing, inflation, real and nominal returns and cash flows

Most listed Australian companies pay dividends twice per year, the 'interim' and 'final' dividends, which are roughly 6 months apart.

You are an equities analyst trying to value the company BHP. You decide to use the Dividend Discount Model (DDM) as a starting point, so you study BHP's dividend history and you find that BHP tends to pay the same interim and final dividend each year, and that both grow by the same rate.

You expect BHP will pay a $0.55 interim dividend in six months and a $0.55 final dividend in one year. You expect each to grow by 4% next year and forever, so the interim and final dividends next year will be $0.572 each, and so on in perpetuity.

Assume BHP's cost of equity is 8% pa. All rates are quoted as nominal effective rates. The dividends are nominal cash flows and the inflation rate is 2.5% pa.

What is the current price of a BHP share?



Question 488  income and capital returns, payout policy, payout ratio, DDM

Two companies BigDiv and ZeroDiv are exactly the same except for their dividend payouts.

BigDiv pays large dividends and ZeroDiv doesn't pay any dividends.

Currently the two firms have the same earnings, assets, number of shares, share price, expected total return and risk.

Assume a perfect world with no taxes, no transaction costs, no asymmetric information and that all assets including business projects are fairly priced and therefore zero-NPV.

All things remaining equal, which of the following statements is NOT correct?



Question 300  NPV, opportunity cost

What is the net present value (NPV) of undertaking a full-time Australian undergraduate business degree as an Australian citizen? Only include the cash flows over the duration of the degree, ignore any benefits or costs of the degree after it's completed.

Assume the following:

  • The degree takes 3 years to complete and all students pass all subjects.
  • There are 2 semesters per year and 4 subjects per semester.
  • University fees per subject per semester are $1,277, paid at the start of each semester. Fees are expected to stay constant for the next 3 years.
  • There are 52 weeks per year.
  • The first semester is just about to start (t=0). The first semester lasts for 19 weeks (t=0 to 19).
  • The second semester starts immediately afterwards (t=19) and lasts for another 19 weeks (t=19 to 38).
  • The summer holidays begin after the second semester ends and last for 14 weeks (t=38 to 52). Then the first semester begins the next year, and so on.
  • Working full time at the grocery store instead of studying full-time pays $20/hr and you can work 35 hours per week. Wages are paid at the end of each week.
  • Full-time students can work full-time during the summer holiday at the grocery store for the same rate of $20/hr for 35 hours per week. Wages are paid at the end of each week.
  • The discount rate is 9.8% pa. All rates and cash flows are real. Inflation is expected to be 3% pa. All rates are effective annual.

The NPV of costs from undertaking the university degree is:



Question 54  NPV, DDM

A stock is expected to pay the following dividends:

Cash Flows of a Stock
Time (yrs) 0 1 2 3 4 ...
Dividend ($) 0.00 1.15 1.10 1.05 1.00 ...
 

After year 4, the annual dividend will grow in perpetuity at -5% pa. Note that this is a negative growth rate, so the dividend will actually shrink. So,

  • the dividend at t=5 will be ##$1(1-0.05) = $0.95##,
  • the dividend at t=6 will be ##$1(1-0.05)^2 = $0.9025##, and so on.

The required return on the stock is 10% pa. Both the growth rate and required return are given as effective annual rates.

What is the current price of the stock?



Question 142  DDM, income and capital returns

When using the dividend discount model to price a stock:

### p_{0} = \frac{d_1}{r - g} ###

The growth rate of dividends (g):



Question 61  NPV

In Australia, domestic university students are allowed to buy concession tickets for the bus, train and ferry which sell at a discount of 50% to full-price tickets.

The Australian Government do not allow international university students to buy concession tickets, they have to pay the full price.

Some international students see this as unfair and they are willing to pay for fake university identification cards which have the concession sticker.

What is the most that an international student would be willing to pay for a fake identification card?

Assume that international students:

  • consider buying their fake card on the morning of the first day of university from their neighbour, just before they leave to take the train into university.
  • buy their weekly train tickets on the morning of the first day of each week.
  • ride the train to university and back home again every day seven days per week until summer holidays 40 weeks from now. The concession card only lasts for those 40 weeks. Assume that there are 52 weeks in the year for the purpose of interest rate conversion.
  • a single full-priced one-way train ride costs $5.
  • have a discount rate of 11% pa, given as an effective annual rate.

Approach this question from a purely financial view point, ignoring the illegality, embarrassment and the morality of committing fraud.



Question 218  NPV, IRR, profitability index, average accounting return

Which of the following statements is NOT correct?



Question 489  NPV, IRR, pay back period, DDM

A firm is considering a business project which costs $11m now and is expected to pay a constant $1m at the end of every year forever.

Assume that the initial $11m cost is funded using the firm's existing cash so no new equity or debt will be raised. The cost of capital is 10% pa.

Which of the following statements about net present value (NPV), internal rate of return (IRR) and payback period is NOT correct?



Question 501  NPV, IRR, pay back period

The below graph shows a project's net present value (NPV) against its annual discount rate.

Which of the following statements is NOT correct?



Question 128  debt terminology, needs refinement

An 'interest payment' is the same thing as a 'coupon payment'. or ?


Question 234  debt terminology

An 'interest only' loan can also be called a:



Question 26  APR, effective rate

A European bond paying annual coupons of 6% offers a yield of 10% pa.

Convert the yield into an effective monthly rate, an effective annual rate and an effective daily rate. Assume that there are 365 days in a year.

All answers are given in the same order:

### r_\text{eff, monthly} , r_\text{eff, yearly} , r_\text{eff, daily} ###



Question 49  inflation, real and nominal returns and cash flows, APR, effective rate

In Australia, nominal yields on semi-annual coupon paying Government Bonds with 2 years until maturity are currently 2.83% pa.

The inflation rate is currently 2.2% pa, given as an APR compounding per quarter. The inflation rate is not expected to change over the next 2 years.

What is the real yield on these bonds, given as an APR compounding every 6 months?



Question 19  fully amortising loan, APR

You want to buy an apartment priced at $300,000. You have saved a deposit of $30,000. The bank has agreed to lend you the $270,000 as a fully amortising loan with a term of 25 years. The interest rate is 12% pa and is not expected to change.

What will be your monthly payments? Remember that mortgage loan payments are paid in arrears (at the end of the month).



Question 172  fully amortising loan, APR

You just signed up for a 30 year fully amortising mortgage loan with monthly payments of $2,000 per month. The interest rate is 9% pa which is not expected to change.

How much did you borrow? After 5 years, how much will be owing on the mortgage? The interest rate is still 9% and is not expected to change.



Question 187  fully amortising loan, APR

You just signed up for a 30 year fully amortising mortgage with monthly payments of $1,000 per month. The interest rate is 6% pa which is not expected to change.

How much did you borrow? After 20 years, how much will be owing on the mortgage? The interest rate is still 6% and is not expected to change.



Question 29  interest only loan

You want to buy an apartment priced at $300,000. You have saved a deposit of $30,000. The bank has agreed to lend you the $270,000 as an interest only loan with a term of 25 years. The interest rate is 12% pa and is not expected to change.

What will be your monthly payments? Remember that mortgage payments are paid in arrears (at the end of the month).



Question 57  interest only loan

You just borrowed $400,000 in the form of a 25 year interest-only mortgage with monthly payments of $3,000 per month. The interest rate is 9% pa which is not expected to change.

You actually plan to pay more than the required interest payment. You plan to pay $3,300 in mortgage payments every month, which your mortgage lender allows. These extra payments will reduce the principal and the minimum interest payment required each month.

At the maturity of the mortgage, what will be the principal? That is, after the last (300th) interest payment of $3,300 in 25 years, how much will be owing on the mortgage?



Question 239  income and capital returns, inflation, real and nominal returns and cash flows, interest only loan

A bank grants a borrower an interest-only residential mortgage loan with a very large 50% deposit and a nominal interest rate of 6% that is not expected to change. Assume that inflation is expected to be a constant 2% pa over the life of the loan. Ignore credit risk.

From the bank's point of view, what is the long term expected nominal capital return of the loan asset?



Question 11  bond pricing

For a price of $100, Vera will sell you a 2 year bond paying semi-annual coupons of 10% pa. The face value of the bond is $100. Other bonds with similar risk, maturity and coupon characteristics trade at a yield of 8% pa.

Would you like to her bond or politely ?


Question 48  IRR, NPV, bond pricing, premium par and discount bonds, market efficiency

The theory of fixed interest bond pricing is an application of the theory of Net Present Value (NPV). Also, a 'fairly priced' asset is not over- or under-priced. Buying or selling a fairly priced asset has an NPV of zero.

Considering this, which of the following statements is NOT correct?



Question 56  income and capital returns, bond pricing, premium par and discount bonds

Which of the following statements about risk free government bonds is NOT correct?

Hint: Total return can be broken into income and capital returns as follows:

###\begin{aligned} r_\text{total} &= \frac{c_1}{p_0} + \frac{p_1-p_0}{p_0} \\ &= r_\text{income} + r_\text{capital} \end{aligned} ###

The capital return is the growth rate of the price.
The income return is the periodic cash flow. For a bond this is the coupon payment.


Question 207  income and capital returns, bond pricing, coupon rate, no explanation

For a bond that pays fixed semi-annual coupons, how is the annual coupon rate defined, and how is the bond's annual income yield from time 0 to 1 defined mathematically?

Let: ##P_0## be the bond price now,

##F_T## be the bond's face value,

##T## be the bond's maturity in years,

##r_\text{total}## be the bond's total yield,

##r_\text{income}## be the bond's income yield,

##r_\text{capital}## be the bond's capital yield, and

##C_t## be the bond's coupon at time t in years. So ##C_{0.5}## is the coupon in 6 months, ##C_1## is the coupon in 1 year, and so on.



Question 213  income and capital returns, bond pricing, premium par and discount bonds

The coupon rate of a fixed annual-coupon bond is constant (always the same).

What can you say about the income return (##r_\text{income}##) of a fixed annual coupon bond? Remember that:

###r_\text{total} = r_\text{income} + r_\text{capital}###

###r_\text{total, 0 to 1} = \frac{c_1}{p_0} + \frac{p_1-p_0}{p_0}###

Assume that there is no change in the bond's total annual yield to maturity from when it is issued to when it matures.

Select the most correct statement.

From its date of issue until maturity, the income return of a fixed annual coupon:



Question 229  bond pricing

An investor bought two fixed-coupon bonds issued by the same company, a zero-coupon bond and a 7% pa semi-annual coupon bond. Both bonds have a face value of $1,000, mature in 10 years, and had a yield at the time of purchase of 8% pa.

A few years later, yields fell to 6% pa. Which of the following statements is correct? Note that a capital gain is an increase in price.



Question 347  PE ratio, Multiples valuation

Which of the following investable assets are NOT suitable for valuation using PE multiples techniques?



Question 364  PE ratio, Multiples valuation

Which firms tend to have high forward-looking price-earnings (PE) ratios?



Question 457  PE ratio, Multiples valuation

Which firms tend to have low forward-looking price-earnings (PE) ratios? Only consider firms with positive PE ratios.



Question 269  time calculation, APR

A student won $1m in a lottery. Currently the money is in a bank account which pays interest at 6% pa, given as an APR compounding per month.

She plans to spend $20,000 at the beginning of every month from now on (so the first withdrawal will be at t=0). After each withdrawal, she will check how much money is left in the account. When there is less than $500,000 left, she will donate that remaining amount to charity.

In how many months will she make her last withdrawal and donate the remainder to charity?



Question 333  DDM, time calculation

When using the dividend discount model, care must be taken to avoid using a nominal dividend growth rate that exceeds the country's nominal GDP growth rate. Otherwise the firm is forecast to take over the country since it grows faster than the average business forever.

Suppose a firm's nominal dividend grows at 10% pa forever, and nominal GDP growth is 5% pa forever. The firm's total dividends are currently $1 billion (t=0). The country's GDP is currently $1,000 billion (t=0).

In approximately how many years will the company's total dividends be as large as the country's GDP?



Question 195  equivalent annual cash flow

An industrial chicken farmer grows chickens for their meat. Chickens:

  1. Cost $0.50 each to buy as chicks. They are bought on the day they’re born, at t=0.
  2. Grow at a rate of $0.70 worth of meat per chicken per week for the first 6 weeks (t=0 to t=6).
  3. Grow at a rate of $0.40 worth of meat per chicken per week for the next 4 weeks (t=6 to t=10) since they’re older and grow more slowly.
  4. Feed costs are $0.30 per chicken per week for their whole life. Chicken feed is bought and fed to the chickens once per week at the beginning of the week. So the first amount of feed bought for a chicken at t=0 costs $0.30, and so on.
  5. Can be slaughtered (killed for their meat) and sold at no cost at the end of the week. The price received for the chicken is their total value of meat (note that the chicken grows fast then slow, see above).

The required return of the chicken farm is 0.5% given as an effective weekly rate.

Ignore taxes and the fixed costs of the factory. Ignore the chicken’s welfare and other environmental and ethical concerns.

Find the equivalent weekly cash flow of slaughtering a chicken at 6 weeks and at 10 weeks so the farmer can figure out the best time to slaughter his chickens. The choices below are given in the same order, 6 and 10 weeks.



Question 281  equivalent annual cash flow

You just bought a nice dress which you plan to wear once per month on nights out. You bought it a moment ago for $600 (at t=0). In your experience, dresses used once per month last for 6 years.

Your younger sister is a student with no money and wants to borrow your dress once a month when she hits the town. With the increased use, your dress will only last for another 3 years rather than 6.

What is the present value of the cost of letting your sister use your current dress for the next 3 years?

Assume: that bank interest rates are 10% pa, given as an effective annual rate; you will buy a new dress when your current one wears out; your sister will only use the current dress, not the next one that you will buy; and the price of a new dress never changes.



Question 514  corporate financial decision theory, idiom

The expression 'cash is king' emphasizes the importance of having enough cash to pay your short term debts to avoid bankruptcy. Which business decision is this expression most closely related to?



Question 518  DDM

A stock just paid a dividend of $1. Future annual dividends are expected to grow by 2% pa. The next dividend of $1.02 (=1*(1+0.02)^1) will be in one year, and the year after that the dividend will be $1.0404 (=1*(1+0.02)^2), and so on forever.

Its required total return is 10% pa. The total required return and growth rate of dividends are given as effective annual rates.

Calculate the current stock price.



Question 519  DDM

A stock is just about to pay a dividend of $1 tonight. Future annual dividends are expected to grow by 2% pa. The next dividend of $1 will be paid tonight, and the year after that the dividend will be $1.02 (=1*(1+0.02)^1), and a year later 1.0404 (=1*(1+0.04)^2) and so on forever.

Its required total return is 10% pa. The total required return and growth rate of dividends are given as effective annual rates.

Calculate the current stock price.



Question 524  risk, expected and historical returns, bankruptcy or insolvency, capital structure, corporate financial decision theory, limited liability

Which of the following statements is NOT correct?



Question 529  DDM, real and nominal returns and cash flows, inflation, real estate, no explanation

If housing rents are constrained from growing more than the maximum target inflation rate, and houses can be priced as a perpetuity of growing net rental cash flows, then what is the implication for house prices, all things remaining equal? Select the most correct answer.

Background: Since 1990, many central banks across the world have become 'inflation targeters'. They have adopted a policy of trying to keep inflation in a predictable narrow range, with the hope of encouraging long-term lending to fund more investment and maintain higher GDP growth.

Australia's central bank, the Reserve Bank of Australia (RBA), has specifically stated their inflation target range is between 2 and 3% pa.

Some Australian residential property market commentators suggest that because rental costs comprise a large part of the Australian consumer price index (CPI), rent costs across the nation cannot significantly exceed the maximum inflation target range of 3% pa without the prices of other goods growing by less than the target range for long periods, which is unlikely.


Question 532  mutually exclusive projects, NPV, IRR

An investor owns a whole level of an old office building which is currently worth $1 million. There are three mutually exclusive projects that can be started by the investor. The office building level can be:

  • Rented out to a tenant for one year at $0.1m paid immediately, and then sold for $0.99m in one year.
  • Refurbished into more modern commercial office rooms at a cost of $1m now, and then sold for $2.4m when the refurbishment is finished in one year.
  • Converted into residential apartments at a cost of $2m now, and then sold for $3.4m when the conversion is finished in one year.

All of the development projects have the same risk so the required return of each is 10% pa. The table below shows the estimated cash flows and internal rates of returns (IRR's).

Mutually Exclusive Projects
Project Cash flow
now ($)
Cash flow in
one year ($)
IRR
(% pa)
Rent then sell as is -900,000 990,000 10
Refurbishment into modern offices -2,000,000 2,400,000 20
Conversion into residential apartments -3,000,000 3,400,000 13.33
 

Which project should the investor accept?



Question 414  PE ratio, pay back period, no explanation

A mature firm has constant expected future earnings and dividends. Both amounts are equal. So earnings and dividends are expected to be equal and unchanging.

Which of the following statements is NOT correct?



Question 468  PE ratio

A firm has 1 million shares which trade at a price of $30 each. The firm is expected to announce earnings of $3 million at the end of the year and pay an annual dividend of $1.50 per share.

What is the firm's (forward looking) price/earnings (PE) ratio?



Question 493  PE ratio

A firm has 2m shares and a market capitalisation of equity of $30m. The firm just announced earnings of $5m and paid an annual dividend of $0.75 per share.

What is the firm's (backward looking) price/earnings (PE) ratio?



Question 366  opportunity cost, NPV, CFFA, needs refinement

Your friend is trying to find the net present value of a project. The project is expected to last for just one year with:

  • a negative cash flow of -$1 million initially (t=0), and
  • a positive cash flow of $1.1 million in one year (t=1).

The project has a total required return of 10% pa due to its moderate level of undiversifiable risk.

Your friend is aware of the importance of opportunity costs and the time value of money, but he is unsure of how to find the NPV of the project.

He knows that the opportunity cost of investing the $1m in the project is the expected gain from investing the money in shares instead. Like the project, shares also have an expected return of 10% since they have moderate undiversifiable risk. This opportunity cost is $0.1m ##(=1m \times 10\%)## which occurs in one year (t=1).

He knows that the time value of money should be accounted for, and this can be done by finding the present value of the cash flows in one year.

Your friend has listed a few different ways to find the NPV which are written down below.

(I) ##-1m + \dfrac{1.1m}{(1+0.1)^1} ##

(II) ##-1m + \dfrac{1.1m}{(1+0.1)^1} - \dfrac{1m}{(1+0.1)^1} \times 0.1 ##

(III) ##-1m + \dfrac{1.1m}{(1+0.1)^1} - \dfrac{1.1m}{(1+0.1)^1} \times 0.1 ##

(IV) ##-1m + 1.1m - \dfrac{1.1m}{(1+0.1)^1} \times 0.1 ##

(V) ##-1m + 1.1m - 1.1m \times 0.1 ##

Which of the above calculations give the correct NPV? Select the most correct answer.



Question 173  CFFA

Find Candys Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

Candys Corp
Income Statement for
year ending 30th June 2013
  $m
Sales 200
COGS 50
Operating expense 10
Depreciation 20
Interest expense 10
Income before tax 110
Tax at 30% 33
Net income 77
 
Candys Corp
Balance Sheet
as at 30th June 2013 2012
  $m $m
Assets
Current assets 220 180
PPE    
    Cost 300 340
    Accumul. depr. 60 40
    Carrying amount 240 300
Total assets 460 480
 
Liabilities
Current liabilities 175 190
Non-current liabilities 135 130
Owners' equity
Retained earnings 50 60
Contributed equity 100 100
Total L and OE 460 480
 

 

Note: all figures are given in millions of dollars ($m).



Question 350  CFFA

Find Sidebar Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

Sidebar Corp
Income Statement for
year ending 30th June 2013
  $m
Sales 405
COGS 100
Depreciation 34
Rent expense 22
Interest expense 39
Taxable Income 210
Taxes at 30% 63
Net income 147
 
Sidebar Corp
Balance Sheet
as at 30th June 2013 2012
  $m $m
Inventory 70 50
Trade debtors 11 16
Rent paid in advance 4 3
PPE 700 680
Total assets 785 749
 
Trade creditors 11 19
Bond liabilities 400 390
Contributed equity 220 220
Retained profits 154 120
Total L and OE 785 749
 

 

Note: All figures are given in millions of dollars ($m).

The cash flow from assets was:



Question 360  CFFA

Find Ching-A-Lings Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

Ching-A-Lings Corp
Income Statement for
year ending 30th June 2013
  $m
Sales 100
COGS 20
Depreciation 20
Rent expense 11
Interest expense 19
Taxable Income 30
Taxes at 30% 9
Net income 21
 
Ching-A-Lings Corp
Balance Sheet
as at 30th June 2013 2012
  $m $m
Inventory 49 38
Trade debtors 14 2
Rent paid in advance 5 5
PPE 400 400
Total assets 468 445
 
Trade creditors 4 10
Bond liabilities 200 190
Contributed equity 145 145
Retained profits 119 100
Total L and OE 468 445
 

 

Note: All figures are given in millions of dollars ($m).

The cash flow from assets was:



Question 511  capital budgeting, CFFA

Find the cash flow from assets (CFFA) of the following project.

One Year Mining Project Data
Project life 1 year
Initial investment in building mine and equipment $9m
Depreciation of mine and equipment over the year $8m
Kilograms of gold mined at end of year 1,000
Sale price per kilogram $0.05m
Variable cost per kilogram $0.03m
Before-tax cost of closing mine at end of year $4m
Tax rate 30%
 

Note 1: Due to the project, the firm also anticipates finding some rare diamonds which will give before-tax revenues of $1m at the end of the year.

Note 2: The land that will be mined actually has thermal springs and a family of koalas that could be sold to an eco-tourist resort for an after-tax amount of $3m right now. However, if the mine goes ahead then this natural beauty will be destroyed.

Note 3: The mining equipment will have a book value of $1m at the end of the year for tax purposes. However, the equipment is expected to fetch $2.5m when it is sold.

Find the project's CFFA at time zero and one. Answers are given in millions of dollars ($m), with the first cash flow at time zero, and the second at time one.



Question 512  capital budgeting, CFFA

Find the cash flow from assets (CFFA) of the following project.

Project Data
Project life 2 years
Initial investment in equipment $6m
Depreciation of equipment per year for tax purposes $1m
Unit sales per year 4m
Sale price per unit $8
Variable cost per unit $3
Fixed costs per year, paid at the end of each year $1.5m
Tax rate 30%
 

Note 1: The equipment will have a book value of $4m at the end of the project for tax purposes. However, the equipment is expected to fetch $0.9 million when it is sold at t=2.

Note 2: Due to the project, the firm will have to purchase $0.8m of inventory initially, which it will sell at t=1. The firm will buy another $0.8m at t=1 and sell it all again at t=2 with zero inventory left. The project will have no effect on the firm's current liabilities.

Find the project's CFFA at time zero, one and two. Answers are given in millions of dollars ($m).



Question 273  CFFA, capital budgeting

Value the following business project to manufacture a new product.

Project Data
Project life 2 yrs
Initial investment in equipment $6m
Depreciation of equipment per year $3m
Expected sale price of equipment at end of project $0.6m
Unit sales per year 4m
Sale price per unit $8
Variable cost per unit $5
Fixed costs per year, paid at the end of each year $1m
Interest expense per year 0
Tax rate 30%
Weighted average cost of capital after tax per annum 10%
 

Notes

  1. The firm's current assets and current liabilities are $3m and $2m respectively right now. This net working capital will not be used in this project, it will be used in other unrelated projects.
    Due to the project, current assets (mostly inventory) will grow by $2m initially (at t = 0), and then by $0.2m at the end of the first year (t=1).
    Current liabilities (mostly trade creditors) will increase by $0.1m at the end of the first year (t=1).
    At the end of the project, the net working capital accumulated due to the project can be sold for the same price that it was bought.
  2. The project cost $0.5m to research which was incurred one year ago.

Assumptions

  • All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
  • All rates and cash flows are real. The inflation rate is 3% pa.
  • All rates are given as effective annual rates.
  • The business considering the project is run as a 'sole tradership' (run by an individual without a company) and is therefore eligible for a 50% capital gains tax discount when the equipment is sold, as permitted by the Australian Tax Office.

What is the expected net present value (NPV) of the project?



Question 206  CFFA, interest expense, interest tax shield

Interest expense (IntExp) is an important part of a company's income statement (or 'profit and loss' or 'statement of financial performance').

How does an accountant calculate the annual interest expense of a fixed-coupon bond that has a liquid secondary market? Select the most correct answer:

Annual interest expense is equal to:



Question 367  CFFA, interest tax shield

There are many ways to calculate a firm's free cash flow (FFCF), also called cash flow from assets (CFFA). Some include the annual interest tax shield in the cash flow and some do not.

Which of the below FFCF formulas include the interest tax shield in the cash flow?

###(1) \quad FFCF=NI + Depr - CapEx -ΔNWC + IntExp### ###(2) \quad FFCF=NI + Depr - CapEx -ΔNWC + IntExp.(1-t_c)### ###(3) \quad FFCF=EBIT.(1-t_c )+ Depr- CapEx -ΔNWC+IntExp.t_c### ###(4) \quad FFCF=EBIT.(1-t_c) + Depr- CapEx -ΔNWC### ###(5) \quad FFCF=EBITDA.(1-t_c )+Depr.t_c- CapEx -ΔNWC+IntExp.t_c### ###(6) \quad FFCF=EBITDA.(1-t_c )+Depr.t_c- CapEx -ΔNWC### ###(7) \quad FFCF=EBIT-Tax + Depr - CapEx -ΔNWC### ###(8) \quad FFCF=EBIT-Tax + Depr - CapEx -ΔNWC-IntExp.t_c### ###(9) \quad FFCF=EBITDA-Tax - CapEx -ΔNWC### ###(10) \quad FFCF=EBITDA-Tax - CapEx -ΔNWC-IntExp.t_c###

The formulas for net income (NI also called earnings), EBIT and EBITDA are given below. Assume that depreciation and amortisation are both represented by 'Depr' and that 'FC' represents fixed costs such as rent.

###NI=(Rev - COGS - Depr - FC - IntExp).(1-t_c )### ###EBIT=Rev - COGS - FC-Depr### ###EBITDA=Rev - COGS - FC### ###Tax =(Rev - COGS - Depr - FC - IntExp).t_c= \dfrac{NI.t_c}{1-t_c}###



Question 371  interest tax shield, CFFA

One method for calculating a firm's free cash flow (FFCF, or CFFA) is to ignore interest expense. That is, pretend that interest expense ##(IntExp)## is zero:

###\begin{aligned} FFCF &= (Rev - COGS - Depr - FC - IntExp)(1-t_c) + Depr - CapEx -\Delta NWC + IntExp \\ &= (Rev - COGS - Depr - FC - 0)(1-t_c) + Depr - CapEx -\Delta NWC - 0\\ \end{aligned}###
Does this annual FFCF with zero interest expense or the annual interest tax shield?


Question 370  capital budgeting, NPV, interest tax shield, WACC, CFFA

Project Data
Project life 2 yrs
Initial investment in equipment $600k
Depreciation of equipment per year $250k
Expected sale price of equipment at end of project $200k
Revenue per job $12k
Variable cost per job $4k
Quantity of jobs per year 120
Fixed costs per year, paid at the end of each year $100k
Interest expense in first year (at t=1) $16.091k
Interest expense in second year (at t=2) $9.711k
Tax rate 30%
Government treasury bond yield 5%
Bank loan debt yield 6%
Levered cost of equity 12.5%
Market portfolio return 10%
Beta of assets 1.24
Beta of levered equity 1.5
Firm's and project's debt-to-equity ratio 25%
 

Notes

  1. The project will require an immediate purchase of $50k of inventory, which will all be sold at cost when the project ends. Current liabilities are negligible so they can be ignored.

Assumptions

  • The debt-to-equity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio. Note that interest expense is different in each year.
  • Thousands are represented by 'k' (kilo).
  • All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
  • All rates and cash flows are nominal. The inflation rate is 2% pa.
  • All rates are given as effective annual rates.
  • The 50% capital gains tax discount is not available since the project is undertaken by a firm, not an individual.

What is the net present value (NPV) of the project?



Question 78  WACC, capital structure

A company issues a large amount of bonds to raise money for new projects of similar risk to the company's existing projects. The net present value (NPV) of the new projects is positive but small. Assume a classical tax system. Which statement is NOT correct?



Question 91  WACC, capital structure

A firm has a debt-to-assets ratio of 50%. The firm then issues a large amount of equity to raise money for new projects of similar systematic risk to the company's existing projects. Assume a classical tax system. Which statement is correct?



Question 115  capital structure, leverage, WACC

A firm has a debt-to-assets ratio of 50%. The firm then issues a large amount of debt to raise money for new projects of similar risk to the company's existing projects. Assume a classical tax system. Which statement is correct?



Question 337  capital structure, interest tax shield, leverage, real and nominal returns and cash flows, multi stage growth model

A fast-growing firm is suitable for valuation using a multi-stage growth model.

It's nominal unlevered cash flow from assets (##CFFA_U##) at the end of this year (t=1) is expected to be $1 million. After that it is expected to grow at a rate of:

  • 12% pa for the next two years (from t=1 to 3),
  • 5% over the fourth year (from t=3 to 4), and
  • -1% forever after that (from t=4 onwards). Note that this is a negative one percent growth rate.

Assume that:

  • The nominal WACC after tax is 9.5% pa and is not expected to change.
  • The nominal WACC before tax is 10% pa and is not expected to change.
  • The firm has a target debt-to-equity ratio that it plans to maintain.
  • The inflation rate is 3% pa.
  • All rates are given as nominal effective annual rates.

What is the levered value of this fast growing firm's assets?



Question 411  WACC, capital structure

A firm plans to issue equity and use the cash raised to pay off its debt. No assets will be bought or sold. Ignore the costs of financial distress.

Which of the following statements is NOT correct, all things remaining equal?



Question 559  variance, standard deviation, covariance, correlation

Which of the following statements about standard statistical mathematics notation is NOT correct?



Question 111  portfolio risk, correlation

All things remaining equal, the variance of a portfolio of two positively-weighted stocks rises as:



Question 83  portfolio risk, standard deviation

Portfolio Details
Stock Expected
return
Standard
deviation
Correlation ##(\rho_{A,B})## Dollars
invested
A 0.1 0.4 0.5 60
B 0.2 0.6 140
 

What is the standard deviation (not variance) of the above portfolio?



Question 562  covariance

What is the covariance of a variable X with itself?

The cov(X, X) or ##\sigma_{X,X}## equals:



Question 306  risk, standard deviation

Let the standard deviation of returns for a share per month be ##\sigma_\text{monthly}##.

What is the formula for the standard deviation of the share's returns per year ##(\sigma_\text{yearly})##?

Assume that returns are independently and identically distributed (iid) so they have zero auto correlation, meaning that if the return was higher than average today, it does not indicate that the return tomorrow will be higher or lower than average.



Question 71  CAPM, risk

Stock A has a beta of 0.5 and stock B has a beta of 1. Which statement is NOT correct?



Question 93  correlation, CAPM, systematic risk

A stock's correlation with the market portfolio increases while its total risk is unchanged. What will happen to the stock's expected return and systematic risk?



Question 98  capital structure, CAPM

A firm changes its capital structure by issuing a large amount of debt and using the funds to repurchase shares. Its assets are unchanged. Ignore interest tax shields.

According to the Capital Asset Pricing Model (CAPM), which statement is correct?



Question 248  CAPM, DDM, income and capital returns

The total return of any asset can be broken down in different ways. One possible way is to use the dividend discount model (or Gordon growth model):

###p_0 = \frac{c_1}{r_\text{total}-r_\text{capital}}###

Which, since ##c_1/p_0## is the income return (##r_\text{income}##), can be expressed as:

###r_\text{total}=r_\text{income}+r_\text{capital}###

So the total return of an asset is the income component plus the capital or price growth component.

Another way to break up total return is to use the Capital Asset Pricing Model:

###r_\text{total}=r_\text{f}+β(r_\text{m}- r_\text{f})###

###r_\text{total}=r_\text{time value}+r_\text{risk premium}###

So the risk free rate is the time value of money and the term ##β(r_\text{m}- r_\text{f})## is the compensation for taking on systematic risk.

Using the above theory and your general knowledge, which of the below equations, if any, are correct?

(I) ##r_\text{income}=r_\text{time value}##

(II) ##r_\text{income}=r_\text{risk premium}##

(III) ##r_\text{capital}=r_\text{time value}##

(IV) ##r_\text{capital}=r_\text{risk premium}##

(V) ##r_\text{income}+r_\text{capital}=r_\text{time value}+r_\text{risk premium}##

Which of the equations are correct?



Question 117  WACC

A firm can issue 5 year annual coupon bonds at a yield of 8% pa and a coupon rate of 12% pa.

The beta of its levered equity is 1. Five year government bonds yield 5% pa with a coupon rate of 6% pa. The market's expected dividend return is 4% pa and its expected capital return is 6% pa.

The firm's debt-to-equity ratio is 2:1. The corporate tax rate is 30%.

What is the firm's after-tax WACC? Assume a classical tax system.



Question 303  WACC, CAPM, CFFA

There are many different ways to value a firm's assets. Which of the following will NOT give the correct market value of a levered firm's assets ##(V_L)##? Assume that:

  • The firm is financed by listed common stock and vanilla annual fixed coupon bonds, which are both traded in a liquid market.
  • The bonds' yield is equal to the coupon rate, so the bonds are issued at par. The yield curve is flat and yields are not expected to change. When bonds mature they will be rolled over by issuing the same number of new bonds with the same expected yield and coupon rate, and so on forever.
  • Tax rates on the dividends and capital gains received by investors are equal, and capital gains tax is paid every year, even on unrealised gains regardless of when the asset is sold.
  • There is no re-investment of the firm's cash back into the business. All of the firm's excess cash flow is paid out as dividends so real growth is zero.
  • The firm operates in a mature industry with zero real growth.
  • All cash flows and rates in the below equations are real (not nominal) and are expected to be stable forever. Therefore the perpetuity equation with no growth is suitable for valuation.

Where:

###r_\text{WACC before tax} = r_D.\frac{D}{V_L} + r_{EL}.\frac{E_L}{V_L} = \text{Weighted average cost of capital before tax}### ###r_\text{WACC after tax} = r_D.(1-t_c).\frac{D}{V_L} + r_{EL}.\frac{E_L}{V_L} = \text{Weighted average cost of capital after tax}### ###NI_L=(Rev-COGS-FC-Depr-\mathbf{IntExp}).(1-t_c) = \text{Net Income Levered}### ###CFFA_L=NI_L+Depr-CapEx - \varDelta NWC+\mathbf{IntExp} = \text{Cash Flow From Assets Levered}### ###NI_U=(Rev-COGS-FC-Depr).(1-t_c) = \text{Net Income Unlevered}### ###CFFA_U=NI_U+Depr-CapEx - \varDelta NWC= \text{Cash Flow From Assets Unlevered}###

Question 418  capital budgeting, NPV, interest tax shield, WACC, CFFA, CAPM

Project Data
Project life 1 year
Initial investment in equipment $8m
Depreciation of equipment per year $8m
Expected sale price of equipment at end of project 0
Unit sales per year 4m
Sale price per unit $10
Variable cost per unit $5
Fixed costs per year, paid at the end of each year $2m
Interest expense in first year (at t=1) $0.562m
Corporate tax rate 30%
Government treasury bond yield 5%
Bank loan debt yield 9%
Market portfolio return 10%
Covariance of levered equity returns with market 0.32
Variance of market portfolio returns 0.16
Firm's and project's debt-to-equity ratio 50%
 

Notes

  1. Due to the project, current assets will increase by $6m now (t=0) and fall by $6m at the end (t=1). Current liabilities will not be affected.

Assumptions

  • The debt-to-equity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio.
  • Millions are represented by 'm'.
  • All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
  • All rates and cash flows are real. The inflation rate is 2% pa. All rates are given as effective annual rates.
  • The project is undertaken by a firm, not an individual.

What is the net present value (NPV) of the project?



Question 119  market efficiency, fundamental analysis, joint hypothesis problem

Your friend claims that by reading 'The Economist' magazine's economic news articles, she can identify shares that will have positive abnormal expected returns over the next 2 years. Assuming that her claim is true, which statement(s) are correct?

(i) Weak form market efficiency is broken.

(ii) Semi-strong form market efficiency is broken.

(iii) Strong form market efficiency is broken.

(iv) The asset pricing model used to measure the abnormal returns (such as the CAPM) is either wrong (mis-specification error) or is measured using the wrong inputs (data errors) so the returns may not be abnormal but rather fair for the level of risk.

Select the most correct response:



Question 242  technical analysis, market efficiency

Select the most correct statement from the following.

'Chartists', also known as 'technical traders', believe that:



Question 105  NPV, risk, market efficiency

A person is thinking about borrowing $100 from the bank at 7% pa and investing it in shares with an expected return of 10% pa. One year later the person will sell the shares and pay back the loan in full. Both the loan and the shares are fairly priced.

What is the Net Present Value (NPV) of this one year investment? Note that you are asked to find the present value (##V_0##), not the value in one year (##V_1##).



Question 340  market efficiency, opportunity cost

A managed fund charges fees based on the amount of money that you keep with them. The fee is 2% of the start-of-year amount, but it is paid at the end of every year.

This fee is charged regardless of whether the fund makes gains or losses on your money.

The fund offers to invest your money in shares which have an expected return of 10% pa before fees.

You are thinking of investing $100,000 in the fund and keeping it there for 40 years when you plan to retire.

What is the Net Present Value (NPV) of investing your money in the fund? Note that the question is not asking how much money you will have in 40 years, it is asking: what is the NPV of investing in the fund? Assume that:

  • The fund has no private information.
  • Markets are weak and semi-strong form efficient.
  • The fund's transaction costs are negligible.
  • The cost and trouble of investing your money in shares by yourself, without the managed fund, is negligible.



Question 464  mispriced asset, NPV, DDM, market efficiency

A company advertises an investment costing $1,000 which they say is underpriced. They say that it has an expected total return of 15% pa, but a required return of only 10% pa. Assume that there are no dividend payments so the entire 15% total return is all capital return.

Assuming that the company's statements are correct, what is the NPV of buying the investment if the 15% return lasts for the next 100 years (t=0 to 100), then reverts to 10% pa after that time? Also, what is the NPV of the investment if the 15% return lasts forever?

In both cases, assume that the required return of 10% remains constant. All returns are given as effective annual rates.

The answer choices below are given in the same order (15% for 100 years, and 15% forever):



Question 70  payout policy

Due to floods overseas, there is a cut in the supply of the mineral iron ore and its price increases dramatically. An Australian iron ore mining company therefore expects a large but temporary increase in its profit and cash flows. The mining company does not have any positive NPV projects to begin, so what should it do? Select the most correct answer.



Question 513  stock split, reverse stock split, stock dividend, bonus issue, rights issue

Which of the following statements is NOT correct?



Question 568  rights issue, capital raising, capital structure

A company conducts a 1 for 5 rights issue at a subscription price of $7 when the pre-announcement stock price was $10. What is the percentage change in the stock price and the number of shares outstanding? The answers are given in the same order. Ignore all taxes, transaction costs and signalling effects.



Question 212  rights issue

In mid 2009 the listed mining company Rio Tinto announced a 21-for-40 renounceable rights issue. Below is the chronology of events:

  • 04/06/2009. Share price opens at $69.00 and closes at $66.90.

  • 05/06/2009. 21-for-40 rights issue announced at a subscription price of $28.29.

  • 16/06/2009. Last day that shares trade cum-rights. Share price opens at $76.40 and closes at $75.50.

  • 17/06/2009. Shares trade ex-rights. Rights trading commences.

All things remaining equal, what would you expect Rio Tinto's stock price to open at on the first day that it trades ex-rights (17/6/2009)? Ignore the time value of money since time is negligibly short. Also ignore taxes.



Question 455  income and capital returns, payout policy, DDM, market efficiency

A fairly priced unlevered firm plans to pay a dividend of $1 next year (t=1) which is expected to grow by 3% pa every year after that. The firm's required return on equity is 8% pa.

The firm is thinking about reducing its future dividend payments by 10% so that it can use the extra cash to invest in more projects which are expected to return 8% pa, and have the same risk as the existing projects. Therefore, next year's dividend will be $0.90.

What will be the stock's new annual capital return (proportional increase in price per year) if the change in payout policy goes ahead?

Assume that payout policy is irrelevant to firm value and that all rates are effective annual rates.



Question 313  foreign exchange rate, American and European terms

If the AUD appreciates against the USD, the American terms quote of the AUD will or ?



Question 319  foreign exchange rate, monetary policy, American and European terms

Investors expect the Reserve Bank of Australia (RBA) to keep the policy rate steady at their next meeting.

Then unexpectedly, the RBA announce that they will increase the policy rate by 25 basis points due to fears that the economy is growing too fast and that inflation will be above their target rate of 2 to 3 per cent.

What do you expect to happen to Australia's exchange rate in the short term? The Australian dollar is likely to:



Question 325  foreign exchange rate

In the 1997 Asian financial crisis many countries' exchange rates depreciated rapidly against the US dollar (USD). The Thai, Indonesian, Malaysian, Korean and Filipino currencies were severely affected. The below graph shows these Asian countries' currencies in USD per one unit of their currency, indexed to 100 in June 1997.

Image of Asian currencies in the 1997 Asian financial crisis, sourced from the RBA

Of the statements below, which is NOT correct? The Asian countries':



Question 324  foreign exchange rate

The Chinese government attempts to fix its exchange rate against the US dollar and at the same time use monetary policy to fix its interest rate at a set level.

To be able to fix its exchange rate and interest rate in this way, what does the Chinese government actually do?

  1. Adopts capital controls to prevent financial arbitrage by private firms and individuals.
  2. Adopts the same interest rate (monetary policy) as the United States.
  3. Fixes inflation so that the domestic real interest rate is equal to the United States' real interest rate.

Which of the above statements is or are true?



Question 343  CFFA, capital budgeting

An old company's Firm Free Cash Flow (FFCF, same as CFFA) is forecast in the graph below.

Image of option graphs

To value the firm's assets, the terminal value needs to be calculated using the perpetuity with growth formula:

###V_{\text{terminal, }t-1} = \dfrac{FFCF_{\text{terminal, }t}}{r-g}###

Which point corresponds to the best time to calculate the terminal value?



Question 344  CFFA, capital budgeting

A new company's Firm Free Cash Flow (FFCF, same as CFFA) is forecast in the graph below.

Image of option graphs

To value the firm's assets, the terminal value needs to be calculated using the perpetuity with growth formula:

###V_{\text{terminal, }t-1} = \dfrac{FFCF_{\text{terminal, }t}}{r-g}###

Which point corresponds to the best time to calculate the terminal value?



Question 345  capital budgeting, break even, NPV

Project Data
Project life 10 yrs
Initial investment in factory $10m
Depreciation of factory per year $1m
Expected scrap value of factory at end of project $0
Sale price per unit $10
Variable cost per unit $6
Fixed costs per year, paid at the end of each year $2m
Interest expense per year 0
Tax rate 30%
Cost of capital per annum 10%
 

Notes

  1. The firm's current liabilities are forecast to stay at $0.5m. The firm's current assets (mostly inventory) is currently $1m, but is forecast to grow by $0.1m at the end of each year due to the project.
    At the end of the project, the current assets accumulated due to the project can be sold for the same price that they were bought.
  2. A marketing survey was used to forecast sales. It cost $1.4m which was just paid. The cost has been capitalised by the accountants and is tax-deductible over the life of the project, regardless of whether the project goes ahead or not. This amortisation expense is not included in the depreciation expense listed in the table above.

Assumptions

  • All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
  • All rates and cash flows are real. The inflation rate is 3% pa.
  • All rates are given as effective annual rates.

Find the break even unit production (Q) per year to achieve a zero Net Income (NI) and Net Present Value (NPV), respectively. The answers below are listed in the same order.



Question 419  capital budgeting, NPV, interest tax shield, WACC, CFFA, CAPM, no explanation

Project Data
Project life 1 year
Initial investment in equipment $6m
Depreciation of equipment per year $6m
Expected sale price of equipment at end of project 0
Unit sales per year 9m
Sale price per unit $8
Variable cost per unit $6
Fixed costs per year, paid at the end of each year $1m
Interest expense in first year (at t=1) $0.53m
Tax rate 30%
Government treasury bond yield 5%
Bank loan debt yield 6%
Market portfolio return 10%
Covariance of levered equity returns with market 0.08
Variance of market portfolio returns 0.16
Firm's and project's debt-to-assets ratio 50%
 

Notes

  1. Due to the project, current assets will increase by $5m now (t=0) and fall by $5m at the end (t=1). Current liabilities will not be affected.

Assumptions

  • The debt-to-assets ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio.
  • Millions are represented by 'm'.
  • All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
  • All rates and cash flows are real. The inflation rate is 2% pa.
  • All rates are given as effective annual rates.
  • The 50% capital gains tax discount is not available since the project is undertaken by a firm, not an individual.

What is the net present value (NPV) of the project?



Question 458  capital budgeting, no explanation

Which of the following is NOT a valid method to estimate future revenues or costs in a pro-forma income statement when trying to value a company?



Question 487  capital budgeting, opportunity cost, sunk cost

A young lady is trying to decide if she should attend university or begin working straight away in her home town.

The young lady's grandma says that she should not go to university because she is less likely to marry the local village boy whom she likes because she will spend less time with him if she attends university.

What's the correct way to classify this item from a capital budgeting perspective when trying to decide whether to attend university?

The cost of not marrying the local village boy should be classified as:



Question 188  CFFA

Find Trademark Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

Trademark Corp
Income Statement for
year ending 30th June 2013
  $m
Sales 100
COGS 25
Operating expense 5
Depreciation 20
Interest expense 20
Income before tax 30
Tax at 30% 9
Net income 21
 
Trademark Corp
Balance Sheet
as at 30th June 2013 2012
  $m $m
Assets
Current assets 120 80
PPE    
    Cost 150 140
    Accumul. depr. 60 40
    Carrying amount 90 100
Total assets 210 180
 
Liabilities
Current liabilities 75 65
Non-current liabilities 75 55
Owners' equity
Retained earnings 10 10
Contributed equity 50 50
Total L and OE 210 180
 

 

Note: all figures are given in millions of dollars ($m).



Question 205  depreciation tax shield, CFFA

There are a number of ways that assets can be depreciated. Generally the government's tax office stipulates a certain method.

But if it didn't, what would be the ideal way to depreciate an asset from the perspective of a businesses owner?



Question 291  CFFA

Find Scubar Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

Scubar Corp
Income Statement for
year ending 30th June 2013
  $m
Sales 200
COGS 60
Depreciation 20
Rent expense 11
Interest expense 19
Taxable Income 90
Taxes at 30% 27
Net income 63
 
Scubar Corp
Balance Sheet
as at 30th June 2013 2012
  $m $m
Inventory 60 50
Trade debtors 19 6
Rent paid in advance 3 2
PPE 420 400
Total assets 502 458
 
Trade creditors 10 8
Bond liabilities 200 190
Contributed equity 130 130
Retained profits 162 130
Total L and OE 502 458
 

 

Note: All figures are given in millions of dollars ($m).

The cash flow from assets was:



Question 308  risk, standard deviation, variance, no explanation

A stock's standard deviation of returns is expected to be:

  • 0.09 per month for the first 5 months;
  • 0.14 per month for the next 7 months.

What is the expected standard deviation of the stock per year ##(\sigma_\text{annual})##?

Assume that returns are independently and identically distributed (iid) and therefore have zero auto-correlation.



Question 561  covariance, correlation

The covariance and correlation of two stocks X and Y's annual returns are calculated over a number of years. The units of the returns are in percent per annum ##(\% pa)##.

What are the units of the covariance ##(\sigma_{X,Y})## and correlation ##(\rho_{X,Y})## of returns respectively?

Hint: Visit Wikipedia to understand the difference between percentage points ##(\text{pp})## and percent ##(\%)##.


Question 245  foreign exchange rate, monetary policy, foreign exchange rate direct quote, no explanation

Investors expect Australia's central bank, the RBA, to leave the policy rate unchanged at their next meeting.

Then unexpectedly, the policy rate is reduced due to fears that Australia's GDP growth is slowing.

What do you expect to happen to Australia's exchange rate? Direct and indirect quotes are given from the perspective of an Australian.

The Australian dollar will:



Question 145  NPV, APR, annuity due

A student just won the lottery. She won $1 million in cash after tax. She is trying to calculate how much she can spend per month for the rest of her life. She assumes that she will live for another 60 years. She wants to withdraw equal amounts at the beginning of every month, starting right now.

All of the cash is currently sitting in a bank account which pays interest at a rate of 6% pa, given as an APR compounding per month. On her last withdrawal, she intends to have nothing left in her bank account. How much can she withdraw at the beginning of each month?



Question 539  debt terminology, fully amortising loan, bond pricing

A 'fully amortising' loan can also be called a:



Question 544  bond pricing, capital raising, no explanation

A firm wishes to raise $10 million now. They will issue 6% pa semi-annual coupon bonds that will mature in 3 years and have a face value of $100 each. Bond yields are 5% pa, given as an APR compounding every 6 months, and the yield curve is flat.

How many bonds should the firm issue?



Question 545  income and capital returns, fully amortising loan, no explanation

Which of the following statements about the capital and income returns of a 25 year fully amortising loan asset is correct?

Assume that the yield curve (which shows total returns over different maturities) is flat and is not expected to change.

Over the 25 years from issuance to maturity, a fully amortising loan's expected annual effective:



Question 398  financial distress, capital raising, leverage, capital structure, NPV

A levered firm has zero-coupon bonds which mature in one year and have a combined face value of $9.9m.

Investors are risk-neutral and therefore all debt and equity holders demand the same required return of 10% pa.

In one year the firm's assets will be worth:

  • $13.2m with probability 0.5 in the good state of the world, or
  • $6.6m with probability 0.5 in the bad state of the world.

A new project presents itself which requires an investment of $2m and will provide a certain cash flow of $3.3m in one year.

The firm doesn't have any excess cash to make the initial $2m investment, but the funds can be raised from shareholders through a fairly priced rights issue. Ignore all transaction costs.

Should shareholders vote to proceed with the project and equity raising? What will be the gain in shareholder wealth if they decide to proceed?



Question 378  leverage, capital structure, no explanation

A levered company's required return on debt is always less than its required return on equity. or ?


Question 380  leverage, capital structure

The "interest expense" on a company's annual income statement is equal to the cash interest payments (but not principal payments) made to debt holders during the year. or ?


Question 397  financial distress, leverage, capital structure, NPV

A levered firm has a market value of assets of $10m. Its debt is all comprised of zero-coupon bonds which mature in one year and have a combined face value of $9.9m.

Investors are risk-neutral and therefore all debt and equity holders demand the same required return of 10% pa.

Therefore the current market capitalisation of debt ##(D_0)## is $9m and equity ##(E_0)## is $1m.

A new project presents itself which requires an investment of $2m and will provide a:

  • $6.6m cash flow with probability 0.5 in the good state of the world, and a
  • -$4.4m (notice the negative sign) cash flow with probability 0.5 in the bad state of the world.

The project can be funded using the company's excess cash, no debt or equity raisings are required.

What would be the new market capitalisation of equity ##(E_\text{0, with project})## if shareholders vote to proceed with the project, and therefore should shareholders proceed with the project?



Question 241  Miller and Modigliani, leverage, payout policy, diversification, NPV

One of Miller and Modigliani's (M&M's) important insights is that a firm's managers should not try to achieve a particular level of leverage or interest tax shields under certain assumptions. So the firm's capital structure is irrelevant. This is because investors can make their own personal leverage and interest tax shields, so there's no need for managers to try to make corporate leverage and interest tax shields. This is true under the assumptions of equal tax rates, interest rates and debt availability for the person and the corporation, no transaction costs and symmetric information.

This principal of 'home-made' or 'do-it-yourself' leverage can also be applied to other topics. Read the following statements to decide which are true:

(I) Payout policy: a firm's managers should not try to achieve a particular pattern of equity payout.

(II) Agency costs: a firm's managers should not try to minimise agency costs.

(III) Diversification: a firm's managers should not try to diversify across industries.

(IV) Shareholder wealth: a firm's managers should not try to maximise shareholders' wealth.

Which of the above statement(s) are true?



Question 237  WACC, Miller and Modigliani, interest tax shield

Which of the following discount rates should be the highest for a levered company? Ignore the costs of financial distress.



Question 95  interest tax shield

The equations for Net Income (NI, also known as Earnings or Net Profit After Tax) and Cash Flow From Assets (CFFA, also known as Free Cash Flow to the Firm) per year are:

###NI=(Rev-COGS-FC-Depr-IntExp).(1-t_c)###

###CFFA=NI+Depr-CapEx - \varDelta NWC+IntExp###

For a firm with debt, what is the formula for the present value of interest tax shields if the tax shields occur in perpetuity?

You may assume:

  • the value of debt (D) is constant through time,
  • The cost of debt and the yield on debt are equal and given by ##r_D##.
  • the appropriate rate to discount interest tax shields is ##r_D##.
  • ##\text{IntExp}=D.r_D##



Question 271  CAPM, option, risk, systematic risk, systematic and idiosyncratic risk

All things remaining equal, according to the capital asset pricing model, if the systematic variance of an asset increases, its required return will increase and its price will decrease.
If the idiosyncratic variance of an asset increases, its price will be unchanged.

What is the relationship between the price of a call or put option and the total, systematic and idiosyncratic variance of the underlying asset that the option is based on? Select the most correct answer.

Call and put option prices increase when the:



Question 450  CAPM, risk, portfolio risk, no explanation

The accounting identity states that the book value of a company's assets (A) equals its liabilities (L) plus owners equity (OE), so A = L + OE.

The finance version states that the market value of a company's assets (V) equals the market value of its debt (D) plus equity (E), so V = D + E.

Therefore a business's assets can be seen as a portfolio of the debt and equity that fund the assets.

Let ##\sigma_\text{V total}^2## be the total variance of returns on assets, ##\sigma_\text{V syst}^2## be the systematic variance of returns on assets, and ##\sigma_\text{V idio}^2## be the idiosyncratic variance of returns on assets, and ##\rho_\text{D idio, E idio}## be the correlation between the idiosyncratic returns on debt and equity.

Which of the following equations is NOT correct?




Copyright © 2014 Keith Woodward