# Fight Finance

#### CoursesTagsRandomAllRecentScores

 Project Data Project life 2 yrs Initial investment in equipment $600k Depreciation of equipment per year$250k Expected sale price of equipment at end of project $200k Revenue per job$12k Variable cost per job $4k Quantity of jobs per year 120 Fixed costs per year, paid at the end of each year$100k Interest expense in first year (at t=1) $16.091k Interest expense in second year (at t=2)$9.711k Tax rate 30% Government treasury bond yield 5% Bank loan debt yield 6% Levered cost of equity 12.5% Market portfolio return 10% Beta of assets 1.24 Beta of levered equity 1.5 Firm's and project's debt-to-equity ratio 25%

Notes

1. The project will require an immediate purchase of $50k of inventory, which will all be sold at cost when the project ends. Current liabilities are negligible so they can be ignored. Assumptions • The debt-to-equity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio. Note that interest expense is different in each year. • Thousands are represented by 'k' (kilo). • All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year. • All rates and cash flows are nominal. The inflation rate is 2% pa. • All rates are given as effective annual rates. • The 50% capital gains tax discount is not available since the project is undertaken by a firm, not an individual. What is the net present value (NPV) of the project? An old company's Firm Free Cash Flow (FFCF, same as CFFA) is forecast in the graph below. To value the firm's assets, the terminal value needs to be calculated using the perpetuity with growth formula: $$V_{\text{terminal, }t-1} = \dfrac{FFCF_{\text{terminal, }t}}{r-g}$$ Which point corresponds to the best time to calculate the terminal value? Find Sidebar Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.  Sidebar Corp Income Statement for year ending 30th June 2013$m Sales 405 COGS 100 Depreciation 34 Rent expense 22 Interest expense 39 Taxable Income 210 Taxes at 30% 63 Net income 147
 Sidebar Corp Balance Sheet as at 30th June 2013 2012 $m$m Cash 0 0 Inventory 70 50 Trade debtors 11 16 Rent paid in advance 4 3 PPE 700 680 Total assets 785 749 Trade creditors 11 19 Bond liabilities 400 390 Contributed equity 220 220 Retained profits 154 120 Total L and OE 785 749

Note: All figures are given in millions of dollars ($m). The cash flow from assets was: Your friend is trying to find the net present value of an investment which: • Costs$1 million initially (t=0); and
• Pays a single positive cash flow of $1.1 million in one year (t=1). The investment has a total required return of 10% pa due to its moderate level of undiversifiable risk. Your friend is aware of the importance of opportunity costs and the time value of money, but he is unsure of how to find the NPV of the project. He knows that the opportunity cost of investing the$1m in the project is the expected gain from investing the money in shares instead. Like the project, shares also have an expected return of 10% since they have moderate undiversifiable risk. This opportunity cost is $0.1m $(=1m \times 10\%)$ which occurs in one year (t=1). He knows that the time value of money should be accounted for, and this can be done by finding the present value of the cash flows in one year. Your friend has listed a few different ways to find the NPV which are written down below. Method 1: $-1m + \dfrac{1.1m}{(1+0.1)^1}$ Method 2: $-1m + 1.1m - 1m \times 0.1$ Method 3: $-1m + \dfrac{1.1m}{(1+0.1)^1} - 1m \times 0.1$ Which of the above calculations give the correct NPV? Select the most correct answer. Your friend just bought a house for$400,000. He financed it using a $320,000 mortgage loan and a deposit of$80,000.

In the context of residential housing and mortgages, the 'equity' tied up in the value of a person's house is the value of the house less the value of the mortgage. So the initial equity your friend has in his house is $80,000. Let this amount be E, let the value of the mortgage be D and the value of the house be V. So $V=D+E$. If house prices suddenly fall by 10%, what would be your friend's percentage change in equity (E)? Assume that the value of the mortgage is unchanged and that no income (rent) was received from the house during the short time over which house prices fell. Remember: $$r_{0\rightarrow1}=\frac{p_1-p_0+c_1}{p_0}$$ where $r_{0-1}$ is the return (percentage change) of an asset with price $p_0$ initially, $p_1$ one period later, and paying a cash flow of $c_1$ at time $t=1$. Suppose that the US government recently announced that subsidies for fresh milk producers will be gradually phased out over the next year. Newspapers say that there are expectations of a 40% increase in the spot price of fresh milk over the next year. Option prices on fresh milk trading on the Chicago Mercantile Exchange (CME) reflect expectations of this 40% increase in spot prices over the next year. Similarly to the rest of the market, you believe that prices will rise by 40% over the next year. What option trades are likely to be profitable, or to be more specific, result in a positive Net Present Value (NPV)? Assume that: • Only the spot price is expected to increase and there is no change in expected volatility or other variables that affect option prices. • No taxes, transaction costs, information asymmetry, bid-ask spreads or other market frictions. Fundamentalists who analyse company financial reports and news announcements (but who don't have inside information) will make positive abnormal returns if: A man inherits$500,000 worth of shares.

He believes that by learning the secrets of trading, keeping up with the financial news and doing complex trend analysis with charts that he can quit his job and become a self-employed day trader in the equities markets.

What is the expected gain from doing this over the first year? Measure the net gain in wealth received at the end of this first year due to the decision to become a day trader. Assume the following:

• He earns $60,000 pa in his current job, paid in a lump sum at the end of each year. • He enjoys examining share price graphs and day trading just as much as he enjoys his current job. • Stock markets are weak form and semi-strong form efficient. • He has no inside information. • He makes 1 trade every day and there are 250 trading days in the year. Trading costs are$20 per trade. His broker invoices him for the trading costs at the end of the year.
• The shares that he currently owns and the shares that he intends to trade have the same level of systematic risk as the market portfolio.
• The market portfolio's expected return is 10% pa.

Measure the net gain over the first year as an expected wealth increase at the end of the year.

Economic statistics released this morning were a surprise: they show a strong chance of consumer price inflation (CPI) reaching 5% pa over the next 2 years.

This is much higher than the previous forecast of 3% pa.

A vanilla fixed-coupon 2-year risk-free government bond was issued at par this morning, just before the economic news was released.

What is the expected change in bond price after the economic news this morning, and in the next 2 years? Assume that:

• Inflation remains at 5% over the next 2 years.
• Investors demand a constant real bond yield.
• The bond price falls by the (after-tax) value of the coupon the night before the ex-coupon date, as in real life.

In Australia, nominal yields on semi-annual coupon paying Government Bonds with 2 years until maturity are currently 2.83% pa.

The inflation rate is currently 2.2% pa, given as an APR compounding per quarter. The inflation rate is not expected to change over the next 2 years.

What is the real yield on these bonds, given as an APR compounding every 6 months?

A bank grants a borrower an interest-only residential mortgage loan with a very large 50% deposit and a nominal interest rate of 6% that is not expected to change. Assume that inflation is expected to be a constant 2% pa over the life of the loan. Ignore credit risk.

From the bank's point of view, what is the long term expected nominal capital return of the loan asset?

Question 345  capital budgeting, break even, NPV

 Project Data Project life 10 yrs Initial investment in factory $10m Depreciation of factory per year$1m Expected scrap value of factory at end of project $0 Sale price per unit$10 Variable cost per unit $6 Fixed costs per year, paid at the end of each year$2m Interest expense per year 0 Tax rate 30% Cost of capital per annum 10%

Notes

1. The firm's current liabilities are forecast to stay at $0.5m. The firm's current assets (mostly inventory) is currently$1m, but is forecast to grow by $0.1m at the end of each year due to the project. At the end of the project, the current assets accumulated due to the project can be sold for the same price that they were bought. 2. A marketing survey was used to forecast sales. It cost$1.4m which was just paid. The cost has been capitalised by the accountants and is tax-deductible over the life of the project, regardless of whether the project goes ahead or not. This amortisation expense is not included in the depreciation expense listed in the table above.

Assumptions

• All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
• All rates and cash flows are real. The inflation rate is 3% pa.
• All rates are given as effective annual rates.

Find the break even unit production (Q) per year to achieve a zero Net Income (NI) and Net Present Value (NPV), respectively. The answers below are listed in the same order.

You believe that the price of a share will fall significantly very soon, but the rest of the market does not. The market thinks that the share price will remain the same. Assuming that your prediction will soon be true, which of the following trades is a bad idea? In other words, which trade will NOT make money or prevent losses?

In the Merton model of corporate debt, buying a levered company's debt is equivalent to buying risk free government bonds and:

In the Merton model of corporate debt, buying a levered company's shares is equivalent to:

In the Merton model of corporate debt, buying a levered company's debt is equivalent to buying the company's assets and:

A European call option will mature in $T$ years with a strike price of $K$ dollars. The underlying asset has a price of $S$ dollars.

What is an expression for the payoff at maturity $(f_T)$ in dollars from having written (being short) the call option?

A risky firm will last for one period only (t=0 to 1), then it will be liquidated. So it's assets will be sold and the debt holders and equity holders will be paid out in that order. The firm has the following quantities:

$V$ = Market value of assets.

$E$ = Market value of (levered) equity.

$D$ = Market value of zero coupon bonds.

$F_1$ = Total face value of zero coupon bonds which is promised to be paid in one year.

What is the payoff to debt holders at maturity, assuming that they keep their debt until maturity?

Two put options are exactly the same, but one matures in one year and the other matures in two years. Which option would you expect to have the higher price, the option which matures or , or should they have the price?

Your firm's research scientists can begin an exciting new project at a cost of $10m now, after which there’s a: • 70% chance that cash flows will be$1m per year forever, starting in 5 years (t=5). This is the A state of the world.
• 20% chance that cash flows will be $3m per year forever, starting in 5 years (t=5). This is the B state of the world. • 10% chance of a major break through in which case the cash flows will be$20m per year forever starting in 5 years (t=5), or the project can be expanded by investing another $10m (at t=5) which is expected to give cash flows of$60m per year forever, starting at year 9 (t=9). This is the C state of the world.

The firm's cost of capital is 10% pa.

What's the present value (at t=0) of the option to expand in year 5?

A European bond paying annual coupons of 6% offers a yield of 10% pa.

Convert the yield into an effective monthly rate, an effective annual rate and an effective daily rate. Assume that there are 365 days in a year.

All answers are given in the same order:

$$r_\text{eff, monthly} , r_\text{eff, yearly} , r_\text{eff, daily}$$

You're trying to save enough money to buy your first car which costs $2,500. You can save$100 at the end of each month starting from now. You currently have no money at all. You just opened a bank account with an interest rate of 6% pa payable monthly.

How many months will it take to save enough money to buy the car? Assume that the price of the car will stay the same over time.

You just signed up for a 30 year fully amortising mortgage loan with monthly payments of $2,000 per month. The interest rate is 9% pa which is not expected to change. How much did you borrow? After 5 years, how much will be owing on the mortgage? The interest rate is still 9% and is not expected to change. Which of the following statements about effective rates and annualised percentage rates (APR's) is NOT correct? The CAPM can be used to find a business's expected opportunity cost of capital: $$r_i=r_f+β_i (r_m-r_f)$$ What should be used as the risk free rate $r_f$?  Project Data Project life 1 year Initial investment in equipment$8m Depreciation of equipment per year $8m Expected sale price of equipment at end of project 0 Unit sales per year 4m Sale price per unit$10 Variable cost per unit $5 Fixed costs per year, paid at the end of each year$2m Interest expense in first year (at t=1) $0.562m Corporate tax rate 30% Government treasury bond yield 5% Bank loan debt yield 9% Market portfolio return 10% Covariance of levered equity returns with market 0.32 Variance of market portfolio returns 0.16 Firm's and project's debt-to-equity ratio 50% Notes 1. Due to the project, current assets will increase by$6m now (t=0) and fall by $6m at the end (t=1). Current liabilities will not be affected. Assumptions • The debt-to-equity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio. • Millions are represented by 'm'. • All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year. • All rates and cash flows are real. The inflation rate is 2% pa. All rates are given as effective annual rates. • The project is undertaken by a firm, not an individual. What is the net present value (NPV) of the project? For a price of$100, Vera will sell you a 2 year bond paying semi-annual coupons of 10% pa. The face value of the bond is 100. Other bonds with similar risk, maturity and coupon characteristics trade at a yield of 8% pa. Would you like to her bond or politely ? Which of the following statements about risk free government bonds is NOT correct? Hint: Total return can be broken into income and capital returns as follows: \begin{aligned} r_\text{total} &= \frac{c_1}{p_0} + \frac{p_1-p_0}{p_0} \\ &= r_\text{income} + r_\text{capital} \end{aligned} The capital return is the growth rate of the price. The income return is the periodic cash flow. For a bond this is the coupon payment. An Australian company just issued two bonds: • A 6-month zero coupon bond at a yield of 6% pa, and • A 12 month zero coupon bond at a yield of 7% pa. What is the company's forward rate from 6 to 12 months? Give your answer as an APR compounding every 6 months, which is how the above bond yields are quoted. Bonds X and Y are issued by different companies, but they both pay a semi-annual coupon of 10% pa and they have the same face value (100) and maturity (3 years).

The only difference is that bond X and Y's yields are 8 and 12% pa respectively. Which of the following statements is true?

For a bond that pays fixed semi-annual coupons, how is the annual coupon rate defined, and how is the bond's annual income yield from time 0 to 1 defined mathematically?

Let: $P_0$ be the bond price now,

$F_T$ be the bond's face value,

$T$ be the bond's maturity in years,

$r_\text{total}$ be the bond's total yield,

$r_\text{income}$ be the bond's income yield,

$r_\text{capital}$ be the bond's capital yield, and

$C_t$ be the bond's coupon at time t in years. So $C_{0.5}$ is the coupon in 6 months, $C_1$ is the coupon in 1 year, and so on.

The coupon rate of a fixed annual-coupon bond is constant (always the same).

What can you say about the income return ($r_\text{income}$) of a fixed annual coupon bond? Remember that:

$$r_\text{total} = r_\text{income} + r_\text{capital}$$

$$r_\text{total, 0 to 1} = \frac{c_1}{p_0} + \frac{p_1-p_0}{p_0}$$

Assume that there is no change in the bond's total annual yield to maturity from when it is issued to when it matures.

Select the most correct statement.

From its date of issue until maturity, the income return of a fixed annual coupon:

In these tough economic times, central banks around the world have cut interest rates so low that they are practically zero. In some countries, government bond yields are also very close to zero.

A three year government bond with a face value of $100 and a coupon rate of 2% pa paid semi-annually was just issued at a yield of 0%. What is the price of the bond? A 30 year Japanese government bond was just issued at par with a yield of 1.7% pa. The fixed coupon payments are semi-annual. The bond has a face value of$100.

Six months later, just after the first coupon is paid, the yield of the bond increases to 2% pa. What is the bond's new price?

The hardest and most important aspect of business project valuation is the estimation of the:

A residential real estate investor believes that house prices will grow at a rate of 5% pa and that rents will grow by 2% pa forever.

All rates are given as nominal effective annual returns. Assume that:

• His forecast is true.
• Real estate is and always will be fairly priced and the capital asset pricing model (CAPM) is true.
• Ignore all costs such as taxes, agent fees, maintenance and so on.
• All rental income cash flow is paid out to the owner, so there is no re-investment and therefore no additions or improvements made to the property.
• The non-monetary benefits of owning real estate and renting remain constant.

Which one of the following statements is NOT correct? Over time:

A levered firm has zero-coupon bonds which mature in one year and have a combined face value of $9.9m. Investors are risk-neutral and therefore all debt and equity holders demand the same required return of 10% pa. In one year the firm's assets will be worth: •$13.2m with probability 0.5 in the good state of the world, or
• $6.6m with probability 0.5 in the bad state of the world. A new project presents itself which requires an investment of$2m and will provide a certain cash flow of $3.3m in one year. The firm doesn't have any excess cash to make the initial$2m investment, but the funds can be raised from shareholders through a fairly priced rights issue. Ignore all transaction costs.

Should shareholders vote to proceed with the project and equity raising? What will be the gain in shareholder wealth if they decide to proceed?

A firm's weighted average cost of capital before tax ($r_\text{WACC before tax}$) would increase due to:

Assume that there exists a perfect world with no transaction costs, no asymmetric information, no taxes, no agency costs, equal borrowing rates for corporations and individual investors, the ability to short the risk free asset, semi-strong form efficient markets, the CAPM holds, investors are rational and risk-averse and there are no other market frictions.

For a firm operating in this perfect world, which statement(s) are correct?

(i) When a firm changes its capital structure and/or payout policy, share holders' wealth is unaffected.

(ii) When the idiosyncratic risk of a firm's assets increases, share holders do not expect higher returns.

(iii) When the systematic risk of a firm's assets increases, share holders do not expect higher returns.

Select the most correct response:

An 'interest only' loan can also be called a:

Stock A has a beta of 0.5 and stock B has a beta of 1. Which statement is NOT correct?

Two risky stocks A and B comprise an equal-weighted portfolio. The correlation between the stocks' returns is 70%.

If the variance of stock A increases but the:

• Prices and expected returns of each stock stays the same,
• Variance of stock B's returns stays the same,
• Correlation of returns between the stocks stays the same.

Which of the following statements is NOT correct?

Stock A and B's returns have a correlation of 0.3. Which statement is NOT correct?

Three important classes of investable risky assets are:

• Corporate debt which has low total risk,
• Real estate which has medium total risk,
• Equity which has high total risk.

Assume that the correlation between total returns on:

• Corporate debt and real estate is 0.1,
• Corporate debt and equity is 0.1,
• Real estate and equity is 0.5.

You are considering investing all of your wealth in one or more of these asset classes. Which portfolio will give the lowest total risk? You are restricted from shorting any of these assets. Disregard returns and the risk-return trade-off, pretend that you are only concerned with minimising risk.

The 'futures price' in a futures contract is paid at the start when the futures contract is agreed to. or ?

A bathroom and plumbing supplies shop offers credit to its customers. Customers are given 60 days to pay for their goods, but if they pay within 7 days they will get a 2% discount.

What is the effective interest rate implicit in the discount being offered? Assume 365 days in a year and that all customers pay on either the 7th day or the 60th day. All rates given in this question are effective annual rates.

Details of two different types of light bulbs are given below:

• Low-energy light bulbs cost $3.50, have a life of nine years, and use about$1.60 of electricity a year, paid at the end of each year.
• Conventional light bulbs cost only $0.50, but last only about a year and use about$6.60 of energy a year, paid at the end of each year.

The real discount rate is 5%, given as an effective annual rate. Assume that all cash flows are real. The inflation rate is 3% given as an effective annual rate.

Find the Equivalent Annual Cost (EAC) of the low-energy and conventional light bulbs. The below choices are listed in that order.

An industrial chicken farmer grows chickens for their meat. Chickens:

1. Cost $0.50 each to buy as chicks. They are bought on the day they’re born, at t=0. 2. Grow at a rate of$0.70 worth of meat per chicken per week for the first 6 weeks (t=0 to t=6).
3. Grow at a rate of $0.40 worth of meat per chicken per week for the next 4 weeks (t=6 to t=10) since they’re older and grow more slowly. 4. Feed costs are$0.30 per chicken per week for their whole life. Chicken feed is bought and fed to the chickens once per week at the beginning of the week. So the first amount of feed bought for a chicken at t=0 costs $0.30, and so on. 5. Can be slaughtered (killed for their meat) and sold at no cost at the end of the week. The price received for the chicken is their total value of meat (note that the chicken grows fast then slow, see above). The required return of the chicken farm is 0.5% given as an effective weekly rate. Ignore taxes and the fixed costs of the factory. Ignore the chicken’s welfare and other environmental and ethical concerns. Find the equivalent weekly cash flow of slaughtering a chicken at 6 weeks and at 10 weeks so the farmer can figure out the best time to slaughter his chickens. The choices below are given in the same order, 6 and 10 weeks. You're advising your superstar client 40-cent who is weighing up buying a private jet or a luxury yacht. 40-cent is just as happy with either, but he wants to go with the more cost-effective option. These are the cash flows of the two options: • The private jet can be bought for$6m now, which will cost $12,000 per month in fuel, piloting and airport costs, payable at the end of each month. The jet will last for 12 years. • Or the luxury yacht can be bought for$4m now, which will cost $20,000 per month in fuel, crew and berthing costs, payable at the end of each month. The yacht will last for 20 years. What's unusual about 40-cent is that he is so famous that he will actually be able to sell his jet or yacht for the same price as it was bought since the next generation of superstar musicians will buy it from him as a status symbol. Bank interest rates are 10% pa, given as an effective annual rate. You can assume that 40-cent will live for another 60 years and that when the jet or yacht's life is at an end, he will buy a new one with the same details as above. Would you advise 40-cent to buy the or the ? Note that the effective monthly rate is $r_\text{eff monthly}=(1+0.1)^{1/12}-1=0.00797414$ You're about to buy a car. These are the cash flows of the two different cars that you can buy: • You can buy an old car for$5,000 now, for which you will have to buy $90 of fuel at the end of each week from the date of purchase. The old car will last for 3 years, at which point you will sell the old car for$500.
• Or you can buy a new car for $14,000 now for which you will have to buy$50 of fuel at the end of each week from the date of purchase. The new car will last for 4 years, at which point you will sell the new car for $1,000. Bank interest rates are 10% pa, given as an effective annual rate. Assume that there are exactly 52 weeks in a year. Ignore taxes and environmental and pollution factors. Should you buy the or the ? A firm can issue 3 year annual coupon bonds at a yield of 10% pa and a coupon rate of 8% pa. The beta of its levered equity is 2. The market's expected return is 10% pa and 3 year government bonds yield 6% pa with a coupon rate of 4% pa. The market value of equity is$1 million and the market value of debt is $1 million. The corporate tax rate is 30%. What is the firm's after-tax WACC? Assume a classical tax system. Let the variance of returns for a share per month be $\sigma_\text{monthly}^2$. What is the formula for the variance of the share's returns per year $(\sigma_\text{yearly}^2)$? Assume that returns are independently and identically distributed (iid) so they have zero auto correlation, meaning that if the return was higher than average today, it does not indicate that the return tomorrow will be higher or lower than average. A stock's standard deviation of returns is expected to be: • 0.09 per month for the first 5 months; • 0.14 per month for the next 7 months. What is the expected standard deviation of the stock per year $(\sigma_\text{annual})$? Assume that returns are independently and identically distributed (iid) and therefore have zero auto-correlation. A student won$1m in a lottery. Currently the money is in a bank account which pays interest at 6% pa, given as an APR compounding per month.

She plans to spend $20,000 at the beginning of every month from now on (so the first withdrawal will be at t=0). After each withdrawal, she will check how much money is left in the account. When there is less than$500,000 left, she will donate that remaining amount to charity.

In how many months will she make her last withdrawal and donate the remainder to charity?

Let the standard deviation of returns for a share per month be $\sigma_\text{monthly}$.

What is the formula for the standard deviation of the share's returns per year $(\sigma_\text{yearly})$?

Assume that returns are independently and identically distributed (iid) so they have zero auto correlation, meaning that if the return was higher than average today, it does not indicate that the return tomorrow will be higher or lower than average.

You just bought a residential apartment as an investment property for $500,000. You intend to rent it out to tenants. They are ready to move in, they would just like to know how much the monthly rental payments will be, then they will sign a twelve-month lease. You require a total return of 8% pa and a rental yield of 5% pa. What would the monthly paid-in-advance rental payments have to be this year to receive that 5% annual rental yield? Also, if monthly rental payments can be increased each year when a new lease agreement is signed, by how much must you increase rents per year to realise the 8% pa total return on the property? Ignore all taxes and the costs of renting such as maintenance costs, real estate agent fees, utilities and so on. Assume that there will be no periods of vacancy and that tenants will promptly pay the rental prices you charge. Note that the first rental payment will be received at t=0. The first lease agreement specifies the first 12 equal payments from t=0 to 11. The next lease agreement can have a rental increase, so the next twelve equal payments from t=12 to 23 can be higher than previously, and so on forever. You want to buy an apartment priced at$300,000. You have saved a deposit of $30,000. The bank has agreed to lend you the$270,000 as an interest only loan with a term of 25 years. The interest rate is 12% pa and is not expected to change.

What will be your monthly payments? Remember that mortgage payments are paid in arrears (at the end of the month).

One year ago you bought $100,000 of shares partly funded using a margin loan. The margin loan size was$70,000 and the other $30,000 was your own wealth or 'equity' in the share assets. The interest rate on the margin loan was 7.84% pa. Over the year, the shares produced a dividend yield of 4% pa and a capital gain of 5% pa. What was the total return on your wealth? Ignore taxes, assume that all cash flows (interest payments and dividends) were paid and received at the end of the year, and all rates above are effective annual rates. Hint: Remember that wealth in this context is your equity (E) in the house asset (V = D+E) which is funded by the loan (D) and your deposit or equity (E). A managed fund charges fees based on the amount of money that you keep with them. The fee is 2% of the end-of-year amount, paid at the end of every year. This fee is charged regardless of whether the fund makes gains or losses on your money. The fund offers to invest your money in shares which have an expected return of 10% pa before fees. You are thinking of investing$100,000 in the fund and keeping it there for 40 years when you plan to retire.

How much money do you expect to have in the fund in 40 years? Also, what is the future value of the fees that the fund expects to earn from you? Give both amounts as future values in 40 years. Assume that:

• The fund has no private information.
• Markets are weak and semi-strong form efficient.
• The fund's transaction costs are negligible.
• The cost and trouble of investing your money in shares by yourself, without the managed fund, is negligible.
• The fund invests its fees in the same companies as it invests your funds in, but with no fees.

The below answer choices list your expected wealth in 40 years and then the fund's expected wealth in 40 years.

What is the net present value (NPV) of undertaking a full-time Australian undergraduate business degree as an Australian citizen? Only include the cash flows over the duration of the degree, ignore any benefits or costs of the degree after it's completed.

Assume the following:

• The degree takes 3 years to complete and all students pass all subjects.
• There are 2 semesters per year and 4 subjects per semester.
• University fees per subject per semester are $1,277, paid at the start of each semester. Fees are expected to remain constant in real terms for the next 3 years. • There are 52 weeks per year. • The first semester is just about to start (t=0). The first semester lasts for 19 weeks (t=0 to 19). • The second semester starts immediately afterwards (t=19) and lasts for another 19 weeks (t=19 to 38). • The summer holidays begin after the second semester ends and last for 14 weeks (t=38 to 52). Then the first semester begins the next year, and so on. • Working full time at the grocery store instead of studying full-time pays$20/hr and you can work 35 hours per week. Wages are paid at the end of each week and are expected to remain constant in real terms.
• Full-time students can work full-time during the summer holiday at the grocery store for the same rate of $20/hr for 35 hours per week. • The discount rate is 9.8% pa. All rates and cash flows are real. Inflation is expected to be 3% pa. All rates are effective annual. The NPV of costs from undertaking the university degree is: A project to build a toll road will take 3 years to complete, costing three payments of$50 million, paid at the start of each year (at times 0, 1, and 2).

After completion, the toll road will yield a constant \$10 million at the end of each year forever with no costs. So the first payment will be at t=4.

The required return of the project is 10% pa given as an effective nominal rate. All cash flows are nominal.

What is the payback period?