The saying "buy low, sell high" suggests that investors should make a:

You have $100,000 in the bank. The bank pays interest at 10% pa, given as an effective annual rate.

You wish to consume an equal amount now (t=0), in one year (t=1) and in two years (t=2), and still have $50,000 in the bank after that (t=2).

How much can you consume at each time?

This annuity formula ##\dfrac{C_1}{r}\left(1-\dfrac{1}{(1+r)^3} \right)## is equivalent to which of the following formulas? Note the **3**.

In the below formulas, ##C_t## is a cash flow at time t. All of the cash flows are equal, but paid at different times.

A stock is **just about to pay** a dividend of $1 **tonight**. Future annual dividends are expected to grow by 2% pa. The next dividend of $1 will be paid tonight, and the year after that the dividend will be $1.02 (=1*(1+0.02)^1), and a year later 1.0404 (=1*(1+0.04)^2) and so on forever.

Its required total return is 10% pa. The total required return and growth rate of dividends are given as effective annual rates.

Calculate the current stock price.

The perpetuity with growth formula, also known as the dividend discount model (DDM) or Gordon growth model, is appropriate for valuing a company's shares. ##P_0## is the current share price, ##C_1## is next year's expected dividend, ##r## is the total required return and ##g## is the expected growth rate of the dividend.

###P_0=\dfrac{C_1}{r-g}###

The below graph shows the expected future price path of the company's shares. Which of the following statements about the graph is **NOT** correct?

**Question 728** inflation, real and nominal returns and cash flows, income and capital returns, no explanation

Which of the following statements about gold is **NOT** correct? Assume that the gold price increases by inflation. Gold:

One and a half years ago Frank bought a house for $**600,000**. Now it's worth only $**500,000**, based on recent similar sales in the area.

The expected total return on Frank's residential property is **7**% pa.

He rents his house out for $**1,600** per month, paid in advance. Every 12 months he plans to increase the rental payments.

The present value of 12 months of rental payments is $**18,617.27**.

The future value of 12 months of rental payments one year in the future is $**19,920.48**.

What is the expected annual **rental** yield of the property? Ignore the costs of renting such as maintenance, real estate agent fees and so on.

**Question 525** income and capital returns, real and nominal returns and cash flows, inflation

Which of the following statements about cash in the form of notes and coins is **NOT** correct? Assume that inflation is positive.

Notes and coins:

**Question 734** real and nominal returns and cash flows, inflation, DDM, no explanation

An equities analyst is using the dividend discount model to price a company's shares. The company operates domestically and has no plans to expand overseas. It is part of a mature industry with stable positive growth prospects.

The analyst has estimated the **real** required return (r) of the stock and the value of the dividend that the stock **just paid** a moment before ##(C_\text{0 before})##.

What is the highest perpetual **real** growth rate of dividends (g) that can be justified? Select the most correct statement from the following choices. The highest perpetual real expected growth rate of dividends that can be justified is the country's expected:

**Question 548** equivalent annual cash flow, time calculation, no explanation

An Apple iPhone 6 smart phone can be bought now for $**999**. An Android Kogan Agora 4G+ smart phone can be bought now for $**240**.

If the Kogan phone lasts for **one** year, approximately how long must the Apple phone last for to have the same equivalent annual cost?

Assume that both phones have equivalent features besides their lifetimes, that both are worthless once they've outlasted their life, the discount rate is **10**% pa given as an effective annual rate, and there are no extra costs or benefits from either phone.

Stocks in the United States usually pay **quarterly** dividends. For example, the software giant Microsoft paid a $0.23 dividend every quarter over the 2013 financial year and plans to pay a $0.28 dividend every quarter over the 2014 financial year.

Using the dividend discount model and net present value techniques, calculate the stock price of Microsoft assuming that:

- The time now is the beginning of July 2014. The next dividend of $
**0.28**will be received in**3**months (end of September 2014), with another 3 quarterly payments of $0.28 after this (end of December 2014, March 2015 and June 2015). - The quarterly dividend will increase by
**2.5**% every year, but each quarterly dividend over the year will be equal. So each quarterly dividend paid in the financial year beginning in September 2015 will be $ 0.287 ##(=0.28×(1+0.025)^1)##, with the last at the end of June 2016. In the next financial year beginning in September 2016 each quarterly dividend will be $0.294175 ##(=0.28×(1+0.025)^2)##, with the last at the end of June 2017, and so on forever. - The total required return on equity is
**6**% pa. - The required return and growth rate are given as effective annual rates.
- Dividend payment dates and ex-dividend dates are at the same time.
- Remember that there are 4 quarters in a year and 3 months in a quarter.

What is the current stock price?

**Question 497** income and capital returns, DDM, ex dividend date

A stock will pay you a dividend of $**10** **tonight** if you buy it **today**. Thereafter the annual dividend is expected to grow by **5**% pa, so the next dividend after the $10 one tonight will be $10.50 in one year, then in two years it will be $11.025 and so on. The stock's required return is **10**% pa.

What is the stock price today and what do you expect the stock price to be tomorrow, approximately?

A fairly valued share's current price is $**4** and it has a total required return of **30**%. Dividends are paid annually and next year's dividend is expected to be $**1**. After that, dividends are expected to grow by **5**% pa in perpetuity. All rates are effective annual returns.

What is the expected dividend income paid at the end of the second year (t=**2**) and what is the expected capital gain from just after the first dividend (t=**1**) to just after the second dividend (t=**2**)? The answers are given in the same order, the dividend and then the capital gain.

**Question 50** DDM, stock pricing, inflation, real and nominal returns and cash flows

Most listed Australian companies pay dividends twice per year, the 'interim' and 'final' dividends, which are roughly 6 months apart.

You are an equities analyst trying to value the company BHP. You decide to use the Dividend Discount Model (DDM) as a starting point, so you study BHP's dividend history and you find that BHP tends to pay the same interim and final dividend each year, and that both grow by the same rate.

You expect BHP will pay a $0.55 interim dividend in six months and a $0.55 final dividend in one year. You expect each to grow by 4% next year and forever, so the interim and final dividends next year will be $0.572 each, and so on in perpetuity.

Assume BHP's cost of equity is 8% pa. All rates are quoted as nominal effective rates. The dividends are nominal cash flows and the inflation rate is 2.5% pa.

What is the current price of a BHP share?

**Question 535** DDM, real and nominal returns and cash flows, stock pricing

You are an equities analyst trying to value the equity of the Australian telecoms company Telstra, with ticker TLS. In Australia, listed companies like Telstra tend to pay dividends every **6** months. The payment around August is called the final dividend and the payment around February is called the interim dividend. Both occur annually.

- Today is mid-
**March 2015**. - TLS's last interim dividend of $
**0.15**was one month ago in mid-**February 2015**. - TLS's last final dividend of $
**0.15**was seven months ago in mid-**August 2014**.

Judging by TLS's dividend history and prospects, you estimate that the nominal dividend growth rate will be **1**% pa. Assume that TLS's total nominal cost of equity is **6**% pa. The dividends are nominal cash flows and the inflation rate is **2.5**% pa. All rates are quoted as nominal effective annual rates. Assume that each month is exactly one twelfth (1/12) of a year, so you can ignore the number of days in each month.

Calculate the current TLS share price.

**Question 488** income and capital returns, payout policy, payout ratio, DDM

Two companies BigDiv and ZeroDiv are exactly the same except for their dividend payouts.

BigDiv pays large dividends and ZeroDiv doesn't pay any dividends.

Currently the two firms have the same earnings, assets, number of shares, share price, expected total return and risk.

Assume a perfect world with no taxes, no transaction costs, no asymmetric information and that all assets including business projects are fairly priced and therefore zero-NPV.

All things remaining equal, which of the following statements is **NOT** correct?

A stock is expected to pay a dividend of $15 in one year (t=1), then $25 for 9 years after that (payments at t=2 ,3,...10), and on the 11th year (t=11) the dividend will be 2% less than at t=10, and will continue to shrink at the same rate every year after that forever. The required return of the stock is 10%. All rates are effective annual rates.

What is the price of the stock now?

Carlos and Edwin are brothers and they both love Holden Commodore cars.

Carlos likes to buy the latest Holden Commodore car for **$40,000** every **4** years as soon as the new model is released. As soon as he buys the new car, he sells the old one on the second hand car market for **$20,000**. Carlos never has to bother with paying for repairs since his cars are brand new.

Edwin also likes Commodores, but prefers to buy 4-year old cars for **$20,000** and keep them for **11** years until the end of their life (new ones last for 15 years in total but the 4-year old ones only last for another 11 years). Then he sells the old car for **$2,000** and buys another 4-year old second hand car, and so on.

Every time Edwin buys a second hand 4 year old car he **immediately** has to spend **$1,000** on repairs, and then $1,000 every year after that for the next 10 years. So there are **11** payments in total from when the second hand car is bought at t=0 to the last payment at t=10. One year later (t=11) the old car is at the end of its total 15 year life and can be scrapped for $2,000.

Assuming that Carlos and Edwin maintain their love of Commodores and keep up their habits of buying new ones and second hand ones respectively, how much **larger** is Carlos' **equivalent annual cost** of car ownership compared with Edwin's?

The real discount rate is **10%** pa. All cash flows are real and are expected to remain constant. Inflation is forecast to be **3**% pa. All rates are effective annual. Ignore capital gains tax and tax savings from depreciation since cars are tax-exempt for individuals.

You own a nice suit which you wear once per week on nights out. You bought it one year ago for $600. In your experience, suits used once per week last for 6 years. So you expect yours to last for another 5 years.

Your younger brother said that retro is back in style so he wants to wants to borrow your suit once a week when he goes out. With the increased use, your suit will only last for another 4 years rather than 5.

What is the present value of the cost of letting your brother use your current suit for the next 4 years?

Assume: that bank interest rates are 10% pa, given as an effective annual rate; you will buy a new suit when your current one wears out and your brother will not use the new one; your brother will only use your current suit so he will only use it for the next four years; and the price of a new suit never changes.

You own some nice shoes which you use once per week on date nights. You bought them **2** years ago for $**500**. In your experience, shoes used once per week last for **6** years. So you expect yours to last for another **4** years.

Your younger sister said that she wants to borrow your shoes once per week. With the increased use, your shoes will only last for another **2** years rather than 4.

What is the present value of the cost of letting your sister use your current shoes for the next 2 years?

Assume: that bank interest rates are **10**% pa, given as an effective annual rate; you will buy a new pair of shoes when your current pair wears out and your sister will not use the new ones; your sister will only use your current shoes so she will only use it for the next 2 years; and the price of new shoes never changes.

Which of the below statements about effective rates and annualised percentage rates (APR's) is **NOT** correct?

You just borrowed $400,000 in the form of a 25 year **interest-only** mortgage with monthly payments of $3,000 per month. The interest rate is 9% pa which is not expected to change.

You actually plan to pay more than the required interest payment. You plan to pay $3,300 in mortgage payments every month, which your mortgage lender allows. These extra payments will reduce the principal and the minimum interest payment required each month.

At the maturity of the mortgage, what will be the principal? That is, after the last (300th) interest payment of $3,300 in 25 years, how much will be owing on the mortgage?

**Question 239** income and capital returns, inflation, real and nominal returns and cash flows, interest only loan

A bank grants a borrower an **interest-only** residential mortgage loan with a very large 50% deposit and a **nominal** interest rate of **6%** that is not expected to change. Assume that inflation is expected to be a **constant 2%** pa over the life of the loan. Ignore credit risk.

From the bank's point of view, what is the long term expected **nominal capital** return of the loan asset?

Let the 'income return' of a bond be the coupon at the end of the period divided by the market price now at the start of the period ##(C_1/P_0)##. The expected income return of a **premium** fixed coupon bond is:

An investor bought two fixed-coupon bonds issued by the same company, a zero-coupon bond and a 7% pa semi-annual coupon bond. Both bonds have a face value of $1,000, mature in 10 years, and had a yield at the time of purchase of 8% pa.

A few years later, yields fell to 6% pa. Which of the following statements is correct? Note that a capital gain is an increase in price.

In these tough economic times, central banks around the world have cut interest rates so low that they are practically zero. In some countries, government bond yields are also very close to zero.

A three year government bond with a face value of $100 and a coupon rate of 2% pa paid semi-annually was just issued at a yield of 0%. What is the price of the bond?

**Question 143** bond pricing, zero coupon bond, term structure of interest rates, forward interest rate

An Australian company just issued two bonds:

- A 6-month zero coupon bond at a yield of 6% pa, and
- A 12 month zero coupon bond at a yield of 7% pa.

What is the company's forward rate from 6 to 12 months? Give your answer as an APR compounding every 6 months, which is how the above bond yields are quoted.

You're trying to save enough money to buy your first car which costs $2,500. You can save $100 at the end of each month starting from now. You currently have no money at all. You just opened a bank account with an interest rate of 6% pa payable monthly.

How many months will it take to save enough money to buy the car? Assume that the price of the car will stay the same over time.

Your main expense is fuel for your car which costs $100 per month. You just refueled, so you won't need any more fuel for another month (first payment at t=1 month).

You have $2,500 in a bank account which pays interest at a rate of 6% pa, payable monthly. Interest rates are not expected to change.

Assuming that you have no income, in how many months time will you not have enough money to **fully** refuel your car?

What is the net present value (NPV) of undertaking a full-time Australian undergraduate business degree as an Australian citizen? Only include the cash flows over the duration of the degree, ignore any benefits or costs of the degree after it's completed.

Assume the following:

- The degree takes
**3**years to complete and all students pass all subjects. - There are
**2**semesters per year and**4**subjects per semester. - University fees per subject per semester are
**$1,277**, paid at the**start**of each semester. Fees are expected to stay constant for the next 3 years. - There are
**52**weeks per year. - The first semester is just about to start (t=0). The first semester lasts for 19 weeks (t=
**0**to**19**). - The second semester starts immediately afterwards (t=19) and lasts for another 19 weeks (t=
**19**to**38**). - The summer holidays begin after the second semester ends and last for
**14**weeks (t=**38**to**52**). Then the first semester begins the next year, and so on. - Working full time at the grocery store instead of studying full-time pays
**$20**/hr and you can work**35**hours per week. Wages are paid at the**end**of each week. - Full-time students can work full-time during the summer holiday at the grocery store for the same rate of $20/hr for 35 hours per week. Wages are paid at the end of each week.
- The discount rate is
**9.8%**pa. All rates and cash flows are real. Inflation is expected to be**3%**pa. All rates are effective annual.

The NPV of costs from undertaking the university degree is:

Why is Capital Expenditure (CapEx) subtracted in the Cash Flow From Assets (CFFA) formula?

###CFFA=NI+Depr-CapEx - \Delta NWC+IntExp###

A firm has forecast its Cash Flow From Assets (CFFA) for this year and management is worried that it is too low. Which one of the following actions will lead to a higher CFFA for this year (t=0 to 1)? Only consider cash flows this year. Do not consider cash flows after one year, or the change in the NPV of the firm. Consider each action in isolation.

Over the next year, the management of an unlevered company plans to:

- Achieve firm free cash flow (FFCF or CFFA) of $1m.
- Pay dividends of $1.8m
- Complete a $1.3m share buy-back.
- Spend $0.8m on new buildings without buying or selling any other fixed assets. This capital expenditure is included in the CFFA figure quoted above.

Assume that:

- All amounts are received and paid at the end of the year so you can ignore the time value of money.
- The firm has sufficient retained profits to pay the dividend and complete the buy back.
- The firm plans to run a very tight ship, with no excess cash above operating requirements currently or over the next year.

How much new equity financing will the company need? In other words, what is the value of new shares that will need to be issued?

Over the next year, the management of an **unlevered** company plans to:

- Make $
**5**m in sales, $**1.9m**in net income and $**2**m in equity free cash flow (EFCF). - Pay dividends of $
**1**m. - Complete a $
**1.3**m share buy-back.

Assume that:

- All amounts are received and paid at the end of the year so you can ignore the time value of money.
- The firm has sufficient retained profits to legally pay the dividend and complete the buy back.
- The firm plans to run a very tight ship, with no excess cash above operating requirements currently or over the next year.

How much new equity financing will the company need? In other words, what is the value of new shares that will need to be issued?

Value the following business project to manufacture a new product.

Project Data | ||

Project life | 2 yrs | |

Initial investment in equipment | $6m | |

Depreciation of equipment per year | $3m | |

Expected sale price of equipment at end of project | $0.6m | |

Unit sales per year | 4m | |

Sale price per unit | $8 | |

Variable cost per unit | $5 | |

Fixed costs per year, paid at the end of each year | $1m | |

Interest expense per year | 0 | |

Tax rate | 30% | |

Weighted average cost of capital after tax per annum | 10% | |

**Notes**

- The firm's current assets and current liabilities are $3m and $2m respectively right now. This net working capital will not be used in this project, it will be used in other unrelated projects.

Due to the project, current assets (mostly inventory) will grow by $2m initially (at t = 0), and then by $0.2m at the end of the first year (t=1).

Current liabilities (mostly trade creditors) will increase by $0.1m at the end of the first year (t=1).

At the end of the project, the net working capital accumulated due to the project can be sold for the same price that it was bought. - The project cost $0.5m to research which was incurred one year ago.

**Assumptions**

- All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
- All rates and cash flows are real. The inflation rate is 3% pa.
- All rates are given as effective annual rates.
- The business considering the project is run as a 'sole tradership' (run by an individual without a company) and is therefore eligible for a 50% capital gains tax discount when the equipment is sold, as permitted by the Australian Tax Office.

What is the expected net present value (NPV) of the project?

A manufacturing company is considering a new project in the more risky services industry. The cash flows from assets (CFFA) are estimated for the new project, with interest expense excluded from the calculations. To get the levered value of the project, what should these unlevered cash flows be discounted by?

Assume that the manufacturing firm has a target debt-to-assets ratio that it sticks to.

**Question 370** capital budgeting, NPV, interest tax shield, WACC, CFFA

Project Data | ||

Project life | 2 yrs | |

Initial investment in equipment | $600k | |

Depreciation of equipment per year | $250k | |

Expected sale price of equipment at end of project | $200k | |

Revenue per job | $12k | |

Variable cost per job | $4k | |

Quantity of jobs per year | 120 | |

Fixed costs per year, paid at the end of each year | $100k | |

Interest expense in first year (at t=1) | $16.091k | |

Interest expense in second year (at t=2) | $9.711k | |

Tax rate | 30% | |

Government treasury bond yield | 5% | |

Bank loan debt yield | 6% | |

Levered cost of equity | 12.5% | |

Market portfolio return | 10% | |

Beta of assets | 1.24 | |

Beta of levered equity | 1.5 | |

Firm's and project's debt-to-equity ratio |
25% | |

**Notes**

- The project will require an immediate purchase of $
**50**k of inventory, which will all be sold at cost when the project ends. Current liabilities are negligible so they can be ignored.

**Assumptions**

- The debt-to-equity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio. Note that interest expense is different in each year.
- Thousands are represented by 'k' (kilo).
- All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
- All rates and cash flows are nominal. The inflation rate is 2% pa.
- All rates are given as effective annual rates.
- The 50% capital gains tax discount is not available since the project is undertaken by a firm, not an individual.

What is the net present value (NPV) of the project?

A firm has a debt-to-assets ratio of 50%. The firm then issues a large amount of equity to raise money for new projects of similar systematic risk to the company's existing projects. Assume a classical tax system. Which statement is correct?

A firm has a debt-to-assets ratio of 50%. The firm then issues a large amount of debt to raise money for new projects of similar risk to the company's existing projects. Assume a classical tax system. Which statement is correct?

**Question 337** capital structure, interest tax shield, leverage, real and nominal returns and cash flows, multi stage growth model

A fast-growing firm is suitable for valuation using a multi-stage growth model.

It's **nominal** unlevered cash flow from assets (##CFFA_U##) at the end of this year (**t=1**) is expected to be $**1** million. After that it is expected to grow at a rate of:

**12**% pa for the next two years (from t=1 to 3),**5**% over the fourth year (from t=3 to 4), and**-1**% forever after that (from t=4 onwards). Note that this is a negative one percent growth rate.

Assume that:

- The nominal WACC
**after**tax is**9.5**% pa and is not expected to change. - The nominal WACC
**before**tax is**10**% pa and is not expected to change. - The firm has a target debt-to-
**equity**ratio that it plans to maintain. - The inflation rate is
**3**% pa. - All rates are given as
**nominal**effective annual rates.

What is the levered value of this fast growing firm's assets?

A company issues a large amount of bonds to raise money for new projects of similar risk to the company's existing projects. The net present value (NPV) of the new projects is positive but small. Assume a classical tax system. Which statement is **NOT** correct?

A stock **just paid** its annual dividend of $9. The share price is $60. The required return of the stock is 10% pa as an effective annual rate.

What is the implied growth rate of the dividend per year?

**Question 738** financial statement, balance sheet, income statement

Where can a private firm's market value of equity be found? It can be sourced from the company's:

**Question 740** real and nominal returns and cash flows, DDM, inflation

Taking inflation into account when using the DDM can be hard. Which of the following formulas will **NOT** give a company's current stock price ##(P_0)##? Assume that the annual dividend was just paid ##(C_0)##, and the next dividend will be paid in one year ##(C_1)##.

**Question 742** price gains and returns over time, no explanation

For an asset's price to quintuple every **5** years, what must be its effective annual capital return? Note that a stock's price quintuples when it increases from say $1 to $5.

**Question 744** income and capital returns, real and nominal returns and cash flows, inflation

If someone says "my shares rose by 10% last year", what do you assume that they mean?

A stock is expected to pay a dividend of $1 in one year. Its future annual dividends are expected to grow by 10% pa. So the first dividend of $1 is in one year, and the year after that the dividend will be $1.1 (=1*(1+0.1)^1), and a year later $1.21 (=1*(1+0.1)^2) and so on forever.

Its required total return is 30% pa. The total required return and growth rate of dividends are given as effective annual rates. The stock is fairly priced.

Calculate the pay back period of buying the stock and holding onto it forever, assuming that the dividends are received as at each time, not smoothly over each year.

A real estate agent says that the price of a house in Sydney Australia is approximately equal to the gross weekly rent times 1000.

What type of valuation method is the real estate agent using?

The phone company Optus have 2 mobile service plans on offer which both have the same amount of phone call, text message and internet data credit. Both plans have a contract length of **24** months and the monthly cost is payable in **advance**. The only difference between the two plans is that one is a:

- 'Bring Your Own' (BYO) mobile service plan, costing $
**80**per month. There is no phone included in this plan. The other plan is a: - 'Bundled' mobile service plan that comes with the latest smart phone, costing $
**100**per month. This plan includes the latest smart phone.

Neither plan has any additional payments at the start or end. Assume that the discount rate is **1**% per month given as an effective monthly rate.

The only difference between the plans is the phone, so what is the implied cost of the phone as a present value? Given that the latest smart phone actually costs $**600** to purchase outright from another retailer, should you commit to the BYO plan or the bundled plan?

A stock is expected to pay its first dividend of $**20** in **3** years (t=3), which it will continue to pay for the next nine years, so there will be **ten** $20 payments altogether with the last payment in year 12 (t=12).

From the thirteenth year onward, the dividend is expected to be **4**% more than the previous year, forever. So the dividend in the thirteenth year (t=13) will be $20.80, then $21.632 in year 14, and so on forever. The required return of the stock is **10**% pa. All rates are effective annual rates. Calculate the current (t=0) stock price.

A **4.5**% fixed coupon Australian Government bond was issued at **par** in mid-**April 2009**. Coupons are paid **semi-annually** in arrears in mid-April and mid-October each year. The face value is $**1,000**. The bond will mature in mid-**April 2020**, so the bond had an original tenor of **11** years.

Today is mid-**September 2015** and similar bonds now yield **1.9**% pa.

What is the bond's new price? Note: there are 10 semi-annual coupon payments remaining from now (mid-September 2015) until maturity (mid-April 2020); both yields are given as APR's compounding semi-annually; assume that the yield curve was flat before the change in yields, and remained flat afterwards as well.

An investor bought a **5** year government bond with a **2**% pa coupon rate at **par**. Coupons are paid **semi-annually**. The face value is $**100**.

Calculate the bond's new price **8** months later after yields have increased to **3**% pa. Note that both yields are given as APR's compounding semi-annually. Assume that the yield curve was flat before the change in yields, and remained flat afterwards as well.

Use the below information to value a levered company with constant annual perpetual cash flows from assets. The next cash flow will be generated in one year from now, so a perpetuity can be used to value this firm. Both the cash flow from assets including and excluding interest tax shields are constant (but not equal to each other).

Data on a Levered Firm with Perpetual Cash Flows | ||

Item abbreviation | Value | Item full name |

##\text{CFFA}_\text{U}## | $100m | Cash flow from assets excluding interest tax shields (unlevered) |

##\text{CFFA}_\text{L}## | $112m | Cash flow from assets including interest tax shields (levered) |

##g## | 0% pa | Growth rate of cash flow from assets, levered and unlevered |

##\text{WACC}_\text{BeforeTax}## | 7% pa | Weighted average cost of capital before tax |

##\text{WACC}_\text{AfterTax}## | 6.25% pa | Weighted average cost of capital after tax |

##r_\text{D}## | 5% pa | Cost of debt |

##r_\text{EL}## | 9% pa | Cost of levered equity |

##D/V_L## | 50% pa | Debt to assets ratio, where the asset value includes tax shields |

##t_c## | 30% | Corporate tax rate |

What is the value of the levered firm including interest tax shields?

A project to build a toll road will take **3** years to complete, costing three payments of $**50** million, paid at the start of each year (at times 0, 1, and 2).

After completion, the toll road will yield a constant $**10** million at the end of each year forever with no costs. So the first payment will be at t=**4**.

The required return of the project is 10% pa given as an effective nominal rate. All cash flows are nominal.

What is the **payback period**?

**Question 452** limited liability, expected and historical returns

What is the lowest and highest expected share price and expected return from owning shares in a **company** over a finite period of time?

Let the current share price be ##p_0##, the expected future share price be ##p_1##, the expected future dividend be ##d_1## and the expected return be ##r##. Define the expected return as:

##r=\dfrac{p_1-p_0+d_1}{p_0} ##

The answer choices are stated using inequalities. As an example, the first answer choice "(a) ##0≤p<∞## and ##0≤r< 1##", states that the share price must be larger than or equal to zero and less than positive infinity, and that the return must be larger than or equal to zero and less than one.

You're advising your superstar client 40-cent who is weighing up buying a private jet or a luxury yacht. 40-cent is just as happy with either, but he wants to go with the more cost-effective option. These are the cash flows of the two options:

- The private jet can be bought for $6m now, which will cost $12,000 per month in fuel, piloting and airport costs, payable at the end of each month. The jet will last for
**12**years. - Or the luxury yacht can be bought for $4m now, which will cost $20,000 per month in fuel, crew and berthing costs, payable at the end of each month. The yacht will last for
**20**years.

What's unusual about 40-cent is that he is so famous that he will actually be able to sell his jet or yacht for the same price as it was bought since the next generation of superstar musicians will buy it from him as a status symbol.

Bank interest rates are 10% pa, given as an effective annual rate. You can assume that 40-cent will live for another 60 years and that when the jet or yacht's life is at an end, he will buy a new one with the same details as above.

Would you advise 40-cent to buy the or the ?

Note that the effective monthly rate is ##r_\text{eff monthly}=(1+0.1)^{1/12}-1=0.00797414##

A European bond paying annual coupons of 6% offers a yield of 10% pa.

Convert the yield into an effective monthly rate, an effective annual rate and an effective daily rate. Assume that there are 365 days in a year.

All answers are given in the same order:

### r_\text{eff, monthly} , r_\text{eff, yearly} , r_\text{eff, daily} ###

A prospective home buyer can afford to pay $2,000 per month in mortgage loan repayments. The central bank recently lowered its policy rate by 0.25%, and residential home lenders cut their mortgage loan rates from 4.74% to 4.49%.

How much more can the prospective home buyer borrow now that interest rates are **4.49%** rather than **4.74%**? Give your answer as a proportional increase over the original amount he could borrow (##V_\text{before}##), so:

Assume that:

- Interest rates are expected to be
**constant**over the life of the loan. - Loans are
**interest-only**and have a life of 30 years. - Mortgage loan payments are made every month in arrears and all interest rates are given as annualised percentage rates compounding per month.

**Question 56** income and capital returns, bond pricing, premium par and discount bonds

Which of the following statements about risk free government bonds is **NOT** correct?

**Hint:** Total return can be broken into income and capital returns as follows:

###\begin{aligned} r_\text{total} &= \frac{c_1}{p_0} + \frac{p_1-p_0}{p_0} \\ &= r_\text{income} + r_\text{capital} \end{aligned} ###

The capital return is the growth rate of the price.

The income return is the periodic cash flow. For a bond this is the coupon payment.

**Question 213** income and capital returns, bond pricing, premium par and discount bonds

The coupon rate of a fixed annual-coupon bond is constant (always the same).

What can you say about the income return (##r_\text{income}##) of a fixed annual coupon bond? Remember that:

###r_\text{total} = r_\text{income} + r_\text{capital}###

###r_\text{total, 0 to 1} = \frac{c_1}{p_0} + \frac{p_1-p_0}{p_0}###

Assume that there is no change in the bond's total annual yield to maturity from when it is issued to when it matures.

Select the most correct statement.

From its date of issue until maturity, the **income return** of a fixed annual coupon:

To value a business's assets, the free cash flow of the firm (FCFF, also called CFFA) needs to be calculated. This requires figures from the firm's income statement and balance sheet. For what figures is the balance sheet needed? Note that the balance sheet is sometimes also called the statement of financial position.

The covariance and correlation of two stocks X and Y's annual returns are calculated over a number of years. The units of the returns are in percent per annum ##(\% pa)##.

What are the units of the covariance ##(\sigma_{X,Y})## and correlation ##(\rho_{X,Y})## of returns respectively?

**Hint**: Visit Wikipedia to understand the difference between percentage points ##(\text{pp})## and percent ##(\%)##.

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Which of the following statements is **NOT** correct?

**Question 703** utility, risk aversion, utility function, gamble

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Each person has $500 of initial wealth. A coin toss game is offered to each person at a casino where the player can win or lose $500. Each player can flip a coin and if they flip heads, they receive $500. If they flip tails then they will lose $500. Which of the following statements is **NOT** correct?

**Question 704** utility, risk aversion, utility function, gamble

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Each person has $256 of initial wealth. A coin toss game is offered to each person at a casino where the player can win or lose $256. Each player can flip a coin and if they flip heads, they receive $256. If they flip tails then they will lose $256. Which of the following statements is **NOT** correct?

Stock A has a beta of 0.5 and stock B has a beta of 1. Which statement is **NOT** correct?

A stock's correlation with the market portfolio increases while its total risk is unchanged. What will happen to the stock's expected return and systematic risk?

A stock has a beta of **1.5**. The market's expected total return is **10**% pa and the risk free rate is **5**% pa, both given as effective annual rates.

In the last 5 minutes, bad economic news was released showing a higher chance of recession. Over this time the share market **fell** by **1**%. The risk free rate was unchanged.

What do you think was the stock's historical return over the last 5 minutes, given as an effective 5 minute rate?

A firm changes its capital structure by issuing a large amount of equity and using the funds to repay debt. Its assets are unchanged. Ignore interest tax shields.

According to the Capital Asset Pricing Model (CAPM), which statement is correct?

**Question 418** capital budgeting, NPV, interest tax shield, WACC, CFFA, CAPM

Project Data | ||

Project life | 1 year | |

Initial investment in equipment | $8m | |

Depreciation of equipment per year | $8m | |

Expected sale price of equipment at end of project | 0 | |

Unit sales per year | 4m | |

Sale price per unit | $10 | |

Variable cost per unit | $5 | |

Fixed costs per year, paid at the end of each year | $2m | |

Interest expense in first year (at t=1) | $0.562m | |

Corporate tax rate | 30% | |

Government treasury bond yield | 5% | |

Bank loan debt yield | 9% | |

Market portfolio return | 10% | |

Covariance of levered equity returns with market | 0.32 | |

Variance of market portfolio returns | 0.16 | |

Firm's and project's debt-to-equity ratio |
50% | |

**Notes**

- Due to the project, current assets will increase by $
**6**m now (t=0) and fall by $**6**m at the end (t=1). Current liabilities will not be affected.

**Assumptions**

- The debt-to-equity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio.
- Millions are represented by 'm'.
- All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
- All rates and cash flows are real. The inflation rate is 2% pa. All rates are given as effective annual rates.
- The project is undertaken by a firm, not an individual.

What is the net present value (NPV) of the project?

Fundamentalists who analyse company financial reports and news announcements (but who don't have inside information) will make positive abnormal returns if:

**Question 339** bond pricing, inflation, market efficiency, income and capital returns

Economic statistics released this morning were a surprise: they show a strong chance of consumer price inflation (CPI) reaching 5% pa over the next 2 years.

This is much higher than the previous forecast of 3% pa.

A vanilla fixed-coupon 2-year risk-free government bond was issued at **par** this morning, just **before** the economic news was released.

What is the expected change in bond price after the economic news this morning, and in the next 2 years? Assume that:

- Inflation remains at 5% over the next 2 years.
- Investors demand a constant real bond yield.
- The bond price falls by the (after-tax) value of the coupon the night before the ex-coupon date, as in real life.

The efficient markets hypothesis (EMH) and no-arbitrage pricing theory is most closely related to which of the following concepts?

**Question 338** market efficiency, CAPM, opportunity cost, technical analysis

A man inherits $**500,000** worth of shares.

He believes that by learning the secrets of trading, keeping up with the financial news and doing complex trend analysis with charts that he can quit his job and become a self-employed day trader in the equities markets.

What is the expected gain from doing this over the first year? Measure the net gain in wealth received at the end of this first year due to the decision to become a day trader. Assume the following:

- He earns $
**60,000**pa in his current job, paid in a lump sum at the end of each year. - He enjoys examining share price graphs and day trading just as much as he enjoys his current job.
- Stock markets are weak form and semi-strong form efficient.
- He has no inside information.
- He makes
**1**trade every day and there are**250**trading days in the year. Trading costs are $**20**per trade. His broker invoices him for the trading costs at the end of the year. - The shares that he currently owns and the shares that he intends to trade have the same level of systematic risk as the market portfolio.
- The market portfolio's expected return is
**10**% pa.

Measure the **net gain** over the **first** year as an expected wealth increase at the **end** of the year.

**Question 624** franking credit, personal tax on dividends, imputation tax system, no explanation

Which of the following statements about Australian franking credits is **NOT** correct? Franking credits:

**Question 625** dividend re-investment plan, capital raising

Which of the following statements about dividend re-investment plans (DRP's) is **NOT** correct?

**Question 708** continuously compounding rate, continuously compounding rate conversion

Convert a **10**% continuously compounded annual rate ##(r_\text{cc annual})## into an effective annual rate ##(r_\text{eff annual})##. The equivalent effective annual rate is:

Which of the following quantities is commonly assumed to be **normally** distributed?

**Question 721** mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

Fred owns some Commonwealth Bank (CBA) shares. He has calculated CBA’s monthly returns for each month in the past 20 years using this formula:

###r_\text{t monthly}=\ln \left( \dfrac{P_t}{P_{t-1}} \right)###He then took the arithmetic average and found it to be **1**% per month using this formula:

He also found the standard deviation of these monthly returns which was **5**% per month:

Which of the below statements about Fred’s CBA shares is **NOT** correct? Assume that the past historical average return is the true population average of future expected returns.

**Question 776** market efficiency, systematic and idiosyncratic risk, beta, income and capital returns

Which of the following statements about returns is **NOT** correct? A stock's:

Below is a graph of 3 peoples’ utility functions, Mr Blue (U=W^(1/2) ), Miss Red (U=W/10) and Mrs Green (U=W^2/1000). Assume that each of them currently have $50 of wealth.

Which of the following statements about them is **NOT** correct?

(a) Mr Blue would prefer to invest his wealth in a well diversified portfolio of stocks rather than a single stock, assuming that all stocks had the same total risk and return.

**Question 778** CML, systematic and idiosyncratic risk, portfolio risk, CAPM, no explanation

The capital market line (CML) is shown in the graph below. The total standard deviation is denoted by σ and the expected return is μ. Assume that markets are efficient so all assets are fairly priced.

Which of the below statements is **NOT** correct?

**Question 772** interest tax shield, capital structure, leverage

A firm issues debt and uses the funds to buy back equity. Assume that there are no costs of financial distress or transactions costs. Which of the following statements about interest tax shields is **NOT** correct?

**Question 780** mispriced asset, NPV, DDM, market efficiency, no explanation

A company advertises an investment costing $**1,000** which they say is under priced. They say that it has an expected total return of **15**% pa, but a required return of only **10**% pa. Of the **15**% pa total expected return, the dividend yield is expected to be **4**% pa and the capital yield **11**% pa. Assume that the company's statements are correct.

What is the NPV of buying the investment if the 15% total return lasts for the next 100 years (t=0 to 100), then reverts to 10% after that time? Also, what is the NPV of the investment if the 15% return lasts forever?

In both cases, assume that the required return of 10% remains constant, the dividends can only be re-invested at 10% pa and all returns are given as effective annual rates. The answer choices below are given in the same order (15% for 100 years, and 15% forever):

A company advertises an investment costing $**1,000** which they say is underpriced. They say that it has an expected total return of **15**% pa, but a required return of only **10**% pa. Of the **15**% pa total expected return, the dividend yield is expected to always be **7**% pa and rest is the capital yield.

Assuming that the company's statements are correct, what is the NPV of buying the investment if the **15**% total return lasts for the next 100 years (t=0 to 100), then reverts to **10**% after that time? Also, what is the NPV of the investment if the 15% return lasts forever?

In both cases, assume that the required return of 10% remains constant, the dividends can only be re-invested at **10**% pa and all returns are given as effective annual rates.

The answer choices below are given in the same order (15% for 100 years, and 15% forever):

**Question 779** mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

Fred owns some BHP shares. He has calculated BHP’s monthly returns for each month in the past 30 years using this formula:

###r_\text{t monthly}=\ln \left( \dfrac{P_t}{P_{t-1}} \right)###He then took the arithmetic average and found it to be **0.8**% per month using this formula:

He also found the standard deviation of these monthly returns which was **15**% per month:

Assume that the past historical average return is the true population average of future expected returns and the stock's returns calculated above ##(r_\text{t monthly})## are normally distributed. Which of the below statements about Fred’s BHP shares is **NOT** correct?

The 'time value of money' is most closely related to which of the following concepts?

A company conducts a **10** for **3** stock split. What is the percentage increase in the stock price and the number of shares outstanding? The answers are given in the same order.

Mr Blue, Miss Red and Mrs Green are people with different utility functions. Which of the statements about the 3 utility functions is **NOT** correct?

Mr Blue, Miss Red and Mrs Green are people with different utility functions. Which of the statements about the 3 utility functions is **NOT** correct?

Select the most correct statement from the following.

'Chartists', also known as 'technical traders', believe that:

**Question 494** franking credit, personal tax on dividends, imputation tax system

A firm pays a fully franked cash dividend of $**100** to one of its Australian shareholders who has a personal marginal tax rate of **15**%. The corporate tax rate is **30**%.

What will be the shareholder's personal tax payable due to the dividend payment?

A firm changes its capital structure by issuing a large amount of debt and using the funds to repurchase shares. Its assets are unchanged. Ignore interest tax shields.

According to the Capital Asset Pricing Model (CAPM), which statement is correct?

Which of the following statements about yield curves is **NOT** correct?