**Question 48** IRR, NPV, bond pricing, premium par and discount bonds, market efficiency

The theory of fixed interest bond pricing is an application of the theory of Net Present Value (NPV). Also, a 'fairly priced' asset is not over- or under-priced. Buying or selling a fairly priced asset has an NPV of zero.

Considering this, which of the following statements is **NOT** correct?

Stock A has a beta of 0.5 and stock B has a beta of 1. Which statement is **NOT** correct?

A firm has a debt-to-assets ratio of 50%. The firm then issues a large amount of debt to raise money for new projects of similar market risk to the company's existing projects. Assume a classical tax system. Which statement is correct?

**Question 405** DDM, income and capital returns, no explanation

The perpetuity with growth formula is:

###P_0= \dfrac{C_1}{r-g}###

Which of the following is **NOT** equal to the total required return (r)?

**Question 432** option, option intrinsic value, no explanation

An American call option with a strike price of ##K## dollars will mature in ##T## years. The underlying asset has a price of ##S## dollars.

What is an expression for the current **intrinsic** value in dollars from owning (being long) the American call option? Note that the intrinsic value of an option does not subtract the premium paid to buy the option.

In Australia in the 1980's, inflation was around 8% pa, and residential mortgage loan interest rates were around 14%.

In 2013, inflation was around 2.5% pa, and residential mortgage loan interest rates were around 4.5%.

If a person can afford constant mortgage loan payments of $**2,000** per month, how much more can they borrow when interest rates are **4.5**% pa compared with **14.0**% pa?

Give your answer as a proportional increase over the amount you could borrow when interest rates were high ##(V_\text{high rates})##, so:

###\text{Proportional increase} = \dfrac{V_\text{low rates}-V_\text{high rates}}{V_\text{high rates}} ###

Assume that:

- Interest rates are expected to be constant over the life of the loan.
- Loans are
**interest-only**and have a life of**30**years. - Mortgage loan payments are made every month in arrears and all interest rates are given as annualised percentage rates (
**APR**'s) compounding per**month**.

You have $**100,000** in the bank. The bank pays interest at **10**% pa, given as an effective annual rate.

You wish to consume **half** as much now (t=0) as in one year (t=1) and have nothing left in the bank at the end.

How much can you consume at time zero and one? The answer choices are given in the same order.

Alice, Bob, Chris and Delta are traders in the futures market. The following trades occur over a single day in a newly-opened equity index future that matures in one year which the exchange just made available.

1. Alice buys a future from Bob.

2. Chris buys a future from Delta.

3. Alice buys a future from Chris.

These were the only trades made in this equity index future. What was the trading volume and what is the open interest?

Telsa Motors advertises that its Model S electric car saves $**570** per **month** in fuel costs. Assume that Tesla cars last for **10** years, fuel and electricity costs remain the same, and savings are made at the end of each month with the first saving of $570 in one month from now.

The effective annual interest rate is **15.8**%, and the effective monthly interest rate is **1.23**%. What is the present value of the savings?