Fight Finance

Courses  Tags  Random  All  Recent  Scores

Scores
keithphw$6,001.61
cuiting1$1,844.70
Jade$1,795.80
Yuan$1,726.43
Emma Lu$1,683.33
Visitor$1,663.33
Carolll$1,642.43
Zin$1,629.43
zy$1,589.70
Visitor$1,555.80
Visitor$1,508.61
Visitor$1,428.33
Visitor$1,363.33
cuiting$1,299.70
Visitor$1,253.33
Visitor$1,251.28
Visitor$1,213.33
Tijo$1,089.43
mm11$1,050.33
Nisrita$1,050.33
 

Question 5  DDM

For a price of $6, Carlos will sell you a share which will pay a dividend of $1 in one year and every year after that forever. The required return of the stock is 10% pa.

Would you like to his share or politely ?


Question 39  DDM, perpetuity with growth

A stock is expected to pay the following dividends:

Cash Flows of a Stock
Time (yrs) 0 1 2 3 4 ...
Dividend ($) 0.00 1.00 1.05 1.10 1.15 ...
 

After year 4, the annual dividend will grow in perpetuity at 5% pa, so;

  • the dividend at t=5 will be $1.15(1+0.05),
  • the dividend at t=6 will be $1.15(1+0.05)^2, and so on.

The required return on the stock is 10% pa. Both the growth rate and required return are given as effective annual rates. What is the current price of the stock?



Question 93  correlation, CAPM, systematic risk

A stock's correlation with the market portfolio increases while its total risk is unchanged. What will happen to the stock's expected return and systematic risk?



Question 250  NPV, Loan, arbitrage table

Your neighbour asks you for a loan of $100 and offers to pay you back $120 in one year.

You don't actually have any money right now, but you can borrow and lend from the bank at a rate of 10% pa. Rates are given as effective annual rates.

Assume that your neighbour will definitely pay you back. Ignore interest tax shields and transaction costs.

The Net Present Value (NPV) of lending to your neighbour is $9.09. Describe what you would do to actually receive a $9.09 cash flow right now with zero net cash flows in the future.



Question 269  time calculation, APR

A student won $1m in a lottery. Currently the money is in a bank account which pays interest at 6% pa, given as an APR compounding per month.

She plans to spend $20,000 at the beginning of every month from now on (so the first withdrawal will be at t=0). After each withdrawal, she will check how much money is left in the account. When there is less than $500,000 left, she will donate that remaining amount to charity.

In how many months will she make her last withdrawal and donate the remainder to charity?



Question 547  PE ratio, Multiples valuation, DDM, income and capital returns, no explanation

A firm pays out all of its earnings as dividends. Because of this, the firm has no real growth in earnings, dividends or stock price since there is no re-investment back into the firm to buy new assets and make higher earnings. The dividend discount model is suitable to value this company.

The firm's revenues and costs are expected to increase by inflation in the foreseeable future. The firm has no debt. It operates in the services industry and has few physical assets so there is negligible depreciation expense and negligible net working capital required.

Which of the following statements about this firm's PE ratio is NOT correct? The PE ratio should:

Note: The inverse of x is 1/x.



Question 570  foreign exchange rate

An American wishes to convert USD 1 million to Australian dollars (AUD). The exchange rate is 0.8 USD per AUD. How much is the USD 1 million worth in AUD?



Question 747  DDM, no explanation

A share will pay its next dividend of ##C_1## in one year, and will continue to pay a dividend every year after that forever, growing at a rate of ##g##. So the next dividend will be ##C_2=C_1 (1+g)^1##, then ##C_3=C_2 (1+g)^1##, and so on forever.

The current price of the share is ##P_0## and its required return is ##r##

Which of the following is NOT equal to the expected share price in 2 years ##(P_2)## just after the dividend at that time ##(C_2)## has been paid?



Question 753  NPV, perpetuity, DDM, no explanation

The following cash flows are expected:

  • A perpetuity of yearly payments of $30, with the first payment in 5 years (first payment at t=5, which continues every year after that forever).
  • One payment of $100 in 6 years and 3 months (t=6.25).

What is the NPV of the cash flows if the discount rate is 10% given as an effective annual rate?



Question 776  market efficiency, systematic and idiosyncratic risk, beta, income and capital returns

Which of the following statements about returns is NOT correct? A stock's:




Copyright © 2014 Keith Woodward