# Fight Finance

#### CoursesTagsRandomAllRecentScores

A stock pays semi-annual dividends. It just paid a dividend of $10. The growth rate in the dividend is 1% every 6 months, given as an effective 6 month rate. You estimate that the stock's required return is 21% pa, as an effective annual rate. Using the dividend discount model, what will be the share price? Which one of the following will decrease net income (NI) but increase cash flow from assets (CFFA) in this year for a tax-paying firm, all else remaining constant? Remember: $$NI = (Rev-COGS-FC-Depr-IntExp).(1-t_c )$$ $$CFFA=NI+Depr-CapEx - \Delta NWC+IntExp$$ A risky firm will last for one period only (t=0 to 1), then it will be liquidated. So it's assets will be sold and the debt holders and equity holders will be paid out in that order. The firm has the following quantities: $V$ = Market value of assets. $E$ = Market value of (levered) equity. $D$ = Market value of zero coupon bonds. $F_1$ = Total face value of zero coupon bonds which is promised to be paid in one year. What is the payoff to equity holders at maturity, assuming that they keep their shares until maturity? The below screenshot of Commonwealth Bank of Australia's (CBA) details were taken from the Google Finance website on 7 Nov 2014. Some information has been deliberately blanked out. What was CBA's backwards-looking price-earnings ratio? Assets A, B, M and $r_f$ are shown on the graphs above. Asset M is the market portfolio and $r_f$ is the risk free yield on government bonds. Which of the below statements is NOT correct? Convert a 10% effective annual rate $(r_\text{eff annual})$ into a continuously compounded annual rate $(r_\text{cc annual})$. The equivalent continuously compounded annual rate is: An equity index fund manager controls a USD500 million diversified equity portfolio with a beta of 0.9. The equity manager expects a significant rally in equity prices next year. The market does not think that this will happen. If the fund manager wishes to increase his portfolio beta to 1.5, how many S&P500 futures should he buy? The US market equity index is the S&P500. One year CME futures on the S&P500 currently trade at 2,155 points and the spot price is 2,180 points. Each point is worth$250.

The number of one year S&P500 futures contracts that the fund manager should buy is:

Below are some statements about futures and European-style options on non-dividend paying stocks. Assume that the risk free rate is always positive. Which of these statements is NOT correct? All other things remaining equal:

A common phrase heard in financial markets is that ‘high risk investments deserve high returns’. To make this statement consistent with the Capital Asset Pricing Model (CAPM), a high amount of what specific type of risk deserves a high return?

Investors deserve high returns when they buy assets with high:

If a put option is out-of-the-money, then the spot price ($S_0$) is than, than or to the put option's strike price ($K_T$)?