In Australia, domestic university students are allowed to buy concession tickets for the bus, train and ferry which sell at a discount of **50**% to full-price tickets.

The Australian Government do not allow international university students to buy concession tickets, they have to pay the full price.

Some international students see this as unfair and they are willing to pay for fake university identification cards which have the concession sticker.

What is the most that an international student would be willing to pay for a fake identification card?

Assume that international students:

- consider buying their fake card on the morning of the first day of university from their neighbour, just before they leave to take the train into university.
- buy their weekly train tickets on the morning of the first day of each week.
- ride the train to university and back home again every day seven days per week until summer holidays
**40**weeks from now. The concession card only lasts for those 40 weeks. Assume that there are**52**weeks in the year for the purpose of interest rate conversion. - a single full-priced one-way train ride costs $
**5**. - have a discount rate of
**11**% pa, given as an effective annual rate.

Approach this question from a purely financial view point, ignoring the illegality, embarrassment and the morality of committing fraud.

Below are 4 option graphs. Note that the y-axis is payoff at maturity (T). What options do they depict? List them in the order that they are numbered

A four year bond has a face value of $100, a yield of 9% and a fixed coupon rate of 6%, paid semi-annually. What is its price?

Which of the below statements about effective rates and annualised percentage rates (APR's) is **NOT** correct?

Find Scubar Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

Scubar Corp | ||

Income Statement for | ||

year ending 30th June 2013 | ||

$m | ||

Sales | 200 | |

COGS | 60 | |

Depreciation | 20 | |

Rent expense | 11 | |

Interest expense | 19 | |

Taxable Income | 90 | |

Taxes at 30% | 27 | |

Net income | 63 | |

Scubar Corp | ||

Balance Sheet | ||

as at 30th June | 2013 | 2012 |

$m | $m | |

Inventory | 60 | 50 |

Trade debtors | 19 | 6 |

Rent paid in advance | 3 | 2 |

PPE | 420 | 400 |

Total assets | 502 | 458 |

Trade creditors | 10 | 8 |

Bond liabilities | 200 | 190 |

Contributed equity | 130 | 130 |

Retained profits | 162 | 130 |

Total L and OE | 502 | 458 |

Note: All figures are given in millions of dollars ($m).

The cash flow from assets was:

**Question 327** bill pricing, simple interest rate, no explanation

On 27/09/13, three month Swiss government bills traded at a yield of -0.2%, given as a simple annual yield. That is, interest rates were negative.

If the face value of one of these 90 day bills is CHF1,000,000 (CHF represents Swiss Francs, the Swiss currency), what is the price of one of these bills?

**Question 548** equivalent annual cash flow, time calculation, no explanation

An Apple iPhone 6 smart phone can be bought now for $**999**. An Android Kogan Agora 4G+ smart phone can be bought now for $**240**.

If the Kogan phone lasts for **one** year, approximately how long must the Apple phone last for to have the same equivalent annual cost?

Assume that both phones have equivalent features besides their lifetimes, that both are worthless once they've outlasted their life, the discount rate is **10**% pa given as an effective annual rate, and there are no extra costs or benefits from either phone.

A stock is expected to pay a dividend of $1 in one year. Its future annual dividends are expected to grow by 10% pa. So the first dividend of $1 is in one year, and the year after that the dividend will be $1.1 (=1*(1+0.1)^1), and a year later $1.21 (=1*(1+0.1)^2) and so on forever.

Its required total return is 30% pa. The total required return and growth rate of dividends are given as effective annual rates. The stock is fairly priced.

Calculate the pay back period of buying the stock and holding onto it forever, assuming that the dividends are received as at each time, not smoothly over each year.

One year ago you bought a $**1,000,000** house partly funded using a mortgage loan. The loan size was $**800,000** and the other $**200,000** was your wealth or 'equity' in the house asset.

The interest rate on the home loan was **4**% pa.

Over the year, the house produced a net rental yield of **2**% pa and a capital gain of **2.5**% pa.

Assuming that all cash flows (interest payments and net rental payments) were paid and received at the end of the year, and all rates are given as effective annual rates, what was the **total** return on your **wealth** over the past year?

Hint: Remember that wealth in this context is your equity (E) in the house asset (V = D+E) which is funded by the loan (D) and your deposit or equity (E).