For a price of $129, Joanne will sell you a share which is expected to pay a $30 dividend in one year, and a $10 dividend every year after that forever. So the stock's dividends will be $30 at t=1, $10 at t=2, $10 at t=3, and $10 forever onwards.

The required return of the stock is 10% pa.

A company has:

- 100 million ordinary shares outstanding which are trading at a price of $5 each. Market analysts estimated that the company's ordinary stock has a beta of 1.5. The risk-free rate is 5% and the market return is 10%.
- 1 million preferred shares which have a face (or par) value of $100 and pay a constant annual dividend of 9% of par. The next dividend will be paid in one year. Assume that all preference dividends will be paid when promised. They currently trade at a price of $90 each.
- Debentures that have a total face value of $200 million and a yield to maturity of 6% per annum. They are publicly traded and their market price is equal to 110% of their face value.

The corporate tax rate is 30%. All returns and yields are given as effective annual rates.

What is the company's after-tax Weighted Average Cost of Capital (WACC)? Assume a classical tax system.

A student just won the lottery. She won $1 million in cash after tax. She is trying to calculate how much she can spend per month for the rest of her life. She assumes that she will live for another 60 years. She wants to withdraw equal amounts at the beginning of every month, starting right now.

All of the cash is currently sitting in a bank account which pays interest at a rate of 6% pa, given as an APR compounding per month. On her last withdrawal, she intends to have nothing left in her bank account. How much can she withdraw at the beginning of each month?

The following is the Dividend Discount Model used to price stocks:

### p_0=\frac{d_1}{r-g} ###

All rates are effective annual rates and the cash flows (##d_1##) are received every year. Note that the r and g terms in the above DDM could also be labelled as below: ###r = r_{\text{total, 0}\rightarrow\text{1yr, eff 1yr}}### ###g = r_{\text{capital, 0}\rightarrow\text{1yr, eff 1yr}}### Which of the following statements is **NOT** correct?

Acquirer firm plans to launch a takeover of Target firm. The deal is expected to create a present value of synergies totaling $**2** million. A **cash** offer will be made that pays the fair price for the target's shares plus **70**% of the total synergy value. The cash will be paid out of the firm's cash holdings, no new debt or equity will be raised.

Firms Involved in the Takeover | ||

Acquirer | Target | |

Assets ($m) | 60 | 10 |

Debt ($m) | 20 | 2 |

Share price ($) | 10 | 8 |

Number of shares (m) | 4 | 1 |

Ignore transaction costs and fees. Assume that the firms' debt and equity are fairly priced, and that each firms' debts' risk, yield and values remain constant. The acquisition is planned to occur immediately, so ignore the time value of money.

Calculate the merged firm's share price and total number of shares after the takeover has been completed.

Which of the following statements about book and market equity is **NOT** correct?

**Question 606** foreign exchange rate, American and European terms

Which of the following FX quotes (current in October 2015) is given in American terms?

A stock has a beta of **1.5**. The market's expected total return is **10**% pa and the risk free rate is **5**% pa, both given as effective annual rates.

Over the last year, bad economic news was released showing a higher chance of recession. Over this time the share market **fell** by **1**%. The risk free rate was unchanged.

What do you think was the stock's historical return over the **last year**, given as an effective annual rate?

**Question 710** continuously compounding rate, continuously compounding rate conversion

A continuously compounded **monthly** return of 1% ##(r_\text{cc monthly})## is equivalent to a continuously compounded **annual** return ##(r_\text{cc annual})## of:

Suppose the current Australian exchange rate is 0.8 USD per AUD.

If you think that the AUD will appreciate against the USD, contrary to the rest of the market, how could you profit? Right now you should: