Calculation Example: Solving for Time Logarithms

Question: You have some money in the bank. The effective monthly interest rate is 0.5% per month. How long will it take before your money in the bank has doubled?

Answer: Let V_{0} be the money currently in the bank. Therefore the money in the bank will double when the future value V_{t} equals $2 V_{0}$. The effective monthly rate is 0.5% which is 0.005 .

$$
\begin{aligned}
& V_{t}=V_{0}(1+r)^{t} \\
& 2 V_{0}=V_{0}(1+0.005)^{t} \\
& 2=(1+0.005)^{t} \\
& 1.005^{t}=2
\end{aligned}
$$

$\log \left(1.005^{t}\right)=\log (2)$
$t \times \log (1.005)=\log (2)$
$t=\frac{\log (2)}{\log (1.005)}=138.98$ months $=11.58$ years.

Question: You want to borrow $\$ 500,000$ now to buy a house. You can afford to pay $\$ 4,000$ per month towards the mortgage.
The interest rate on the mortgage is 9% pa, given as an annualised percentage rate compounding per month. Therefore the effective monthly rate is 0.75% per month $(=0.09 / 12)$. How long will it take you to pay it off?

Answer: The mortgage is fully amortising since the payments must completely pay off the loan at maturity. So,
$V_{0}=\frac{C_{1}}{r}\left(1-\frac{1}{(1+r)^{T}}\right)$
$500,000=\frac{4,000}{(0.09 / 12)}\left(1-\frac{1}{(1+0.09 / 12)^{T}}\right)$

$$
\begin{aligned}
& \frac{500,000}{4,000}=\frac{1}{(0.0075)}\left(1-\frac{1}{(1+0.0075)^{T}}\right) \\
& \frac{500 \times 0.0075}{4}=1-\frac{1}{1.0075^{T}} \\
& 0.9375=1-\frac{1}{1.0075^{T}} \\
& 0.0625=\frac{1}{1.0075^{T}} \\
& \begin{aligned}
1.0075^{T} & =\frac{1}{0.0625} \\
& =16
\end{aligned}
\end{aligned}
$$

$\log \left(1.0075^{T}\right)=\log (16)$, and using log rules, $t \times \log (1.0075)=\log (16)$

$$
t=\frac{\log (16)}{\log (1.0075)}=371.06 \text { months }=30.92 \text { years }
$$

