Bond Pricing in between coupons

To price a bond in between coupon periods at time t, grow the bond price P_{0} forward by the yield to maturity:
$P_{t}=P_{0}\left(\mathbf{1}+\boldsymbol{r}_{\text {eff }}\right)^{t} \quad$ where:
P_{t} is the bond price at the current time t and $0<t<1$;
C_{1} is the next coupon payment at time one;
T is the number of coupons remaining to be paid;
$r_{e f f}$ is the yield to maturity as an effective rate per coupon period;
P_{0} is the bond price one period before the next coupon C_{1};
$P_{0}=\frac{C_{1}}{r_{e f f}}\left(1-\frac{1}{\left(1+r_{e f f}\right)^{T}}\right)+\frac{F_{T}}{\left(1+r_{e f f}\right)^{T}}$

Calculation Example: Bond pricing in

between coupons

Question: A 3 year government bond paying 10\% pa semiannual coupons with a face value of $\$ \mathbf{1 0 0}$ was issued $\mathbf{4}$ months ago at a yield of 5% pa. Find the current price of the bond.

Ignore the actual number of days in each month and assume that every month is $1 / 12$ of a year.

Answer: Let the next coupon payment in 6 months be time 1 .
Let's find the bond price one (semi-annual) coupon period before, which is time zero, with 6 semi-annual coupons left:

$$
P_{0}=\frac{0.1 \times 100 / 2}{0.05 / 2}\left(1-\frac{1}{(1+0.05 / 2)^{3 \times 2}}\right)+\frac{100}{(1+0.05 / 2)^{3 \times 2}}
$$

$$
\begin{aligned}
P_{0} & =\frac{0.1 \times 100 / 2}{0.05 / 2}\left(1-\frac{1}{(1+0.05 / 2)^{3 \times 2}}\right)+\frac{100}{(1+0.05 / 2)^{3 \times 2}} \\
& =\frac{5}{0.025}\left(1-\frac{1}{(1+0.025)^{6}}\right)+\frac{100}{(1+0.025)^{6}} \\
& =113.770313404
\end{aligned}
$$

Now grow the bond price that extra 4 months forward, which is $4 / 6(=0.66667)$ semi-annual periods, to get to the current time:

$$
\begin{aligned}
P_{4 \text { months }} & =P_{0}\left(1+r_{\text {APR comp } 6 \text { months }} / 2\right)^{4 / 6} \\
& =113.770313404 \times(1+0.05 / 2)^{4 / 6} \\
& =115.6586711
\end{aligned}
$$

Fixed Coupon Bond Price over Time
3 year maturity, 10\% pa coupon rate, paid semi-annually, \$100 face value, 5\% pa YTM, \$113.77 initial price

Calculation Example: Bond pricing in

between coupons

Question: A 10 year government bond paying 3\% pa semiannual coupons with a face value of $\$ \mathbf{1 0 0}$ was issued 8 months ago on 15 December 2021 at a yield of 3\% pa.

Today is 15 August 2022 and yields are now $\mathbf{2 . 8} \%$ pa. What is the current price of the bond?

Ignore the actual number of days in each month and assume that every month is $1 / 12$ of a year, so the bond was issued 8 months ago from today, 15 August 2022.

Answer: Let the issue date 15 December 2021 be time zero. There are only 19 semi-annual coupons left, since the first was already paid on 15 June 2022. The bond's next coupon (C_{2}) will be paid on 15 December 2022. The bond price one period before coupon C_{2} is:

$$
\begin{aligned}
& P_{1}=\frac{C_{2}}{r_{e f f}}\left(1-\frac{1}{\left(1+r_{e f f}\right)^{19}}\right)+\frac{F_{19}}{\left(1+r_{e f f}\right)^{19}}=\begin{array}{r}
P_{\begin{array}{r}
15 \text { Jun2022, } \\
\text { aftenths } \\
\text { after issue }
\end{array}},
\end{array} \\
& =\frac{0.03 \times 100 / 2}{0.028 / 2}\left(1-\frac{1}{(1+0.028 / 2)^{19}}\right)+\frac{100}{(1+0.028 / 2)^{19}} \\
& =24.87274706+76.78543608=101.6581831 \\
& P_{1.3333}=P_{1}(1+0.028 / 2)^{0.3333}=P_{15 \text { Aug } 2022,}, \\
& 8 \text { months } \\
& \text { after issue } \\
& =101.6581831 \times(1+0.028 / 2)^{2 / 6}=102.1303912
\end{aligned}
$$

The subscripts are in coupon periods so they correspond to the graph and exponents shown in the formula. So for example:

- P_{0} is the initial price when the bond was issued on 15 December 2021.
- P_{1} is the price 1 semi-annual period (6 months) after the bond was issued and corresponds to 15 June 2022.
- $P_{1.3333}$ is the price 1.3333 semi-annual period (8 months) after the bond was issued and corresponds to 15 August 2022. It's the current time that we're trying to price the bond.
- C_{2} is the coupon 2 semi-annual periods (1 year) after the bond was issued and corresponds to 15 December 2022.

The graph helps visualize the problem.

Fixed Coupon Bond Price over Time

10 year maturity, 3% pa coupon rate paid semi-annually, $\$ 100$ face value

Actual bond price path showing YTM changing from 3\% to 2.8\% pa after issue

Expected bond price path if YTM's stayed at 3\% pa
$P_{1}=101.6581831=$ price at 6 months with 2.8% pa YTM, just after first coupon paid

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- |
| Time (semi-annual periods) | |

