Portfolios and Diversification

Let P be a $\$ 100$ portfolio with $\$ 50$ invested in A and $\$ 50$ in B .

- Therefore P is an equal-weighted portfolio in A and B. So:

$$
x_{A}=0.5, \quad x_{B}=0.5
$$

- Return will be exactly halfway at 0.15 .
- Standard deviation is likely to be less than halfway (0.2) due to diversification - we didn't "put all of our eggs in one basket".
- So P will be somewhere along the dashed red line. The standard deviation of P depends on the correlation between A and B.

How Correlation Affects Diversification

- $\rho_{A, B}=-1$, lots of diversification since A and B move in opposite directions.
- $\rho_{A, B}=0$, diversification since A and B move independently and will sometimes cancel each
 other out.
- $\rho_{A, B}=1$, no diversification at all since A and B move with each other in the same ratio. In this case $\sigma_{P}=0.2$.

Portfolio Return and Variance

Portfolio return for n stocks with weights x :
$r_{P}=x_{1} \cdot r_{1}+x_{2} \cdot r_{2}+\cdots+x_{n} \cdot r_{n}=\sum_{i=1}^{n}\left(x_{i} \cdot r_{i}\right)$
Note that the weights must sum to one:
$x_{1}+x_{2}+\cdots+x_{n}=1$
Portfolio variance for 2 stocks with weights x_{1} and x_{2} :
$\sigma_{P}^{2}=x_{1}^{2} \cdot \sigma_{1}^{2}+x_{2}^{2} \cdot \sigma_{2}^{2}+2 \cdot x_{1} \cdot x_{2} \cdot \sigma_{1,2}$

Portfolio Return and Variance Example

Question: Portfolio P in the diagram has a weight of 0.5 in A and 0.5 in B . The correlation between A and B is 0.05 . Find the return and variance of portfolio P. Answer:

$$
\begin{aligned}
r_{P} & =x_{A} \cdot r_{A}+x_{B} \cdot r_{B} \\
& =0.5 \times 0.2+0.5 \times 0.1 \\
& =0.15
\end{aligned}
$$

Since $\rho_{A, B}=0.05$, portfolio variance is:
$\sigma_{P}^{2}=x_{A}^{2} \cdot \sigma_{A}^{2}+x_{B}^{2} \cdot \sigma_{B}^{2}+2 \cdot x_{A} \cdot x_{B} \cdot \sigma_{A, B}$
and
$\sigma_{A, B}=\rho_{A, B} \cdot \sigma_{A} \cdot \sigma_{B}$
So:

$$
\begin{aligned}
\sigma_{P}{ }^{2}= & x_{A}^{2} \cdot \sigma_{A}^{2}+x_{B}^{2} \cdot \sigma_{B}^{2}+2 . x_{A} \cdot x_{B} \cdot \rho_{A, B} \cdot \sigma_{A} \cdot \sigma_{B} \\
= & 0.5^{2} \times 0.25^{2}+0.5^{2} \times 0.15^{2}+ \\
& +2 \times 0.5 \times 0.5 \times 0.05 \times 0.25 \times 0.15
\end{aligned}
$$

$$
\sigma_{P}{ }^{2}=0.0221875
$$

$\sigma_{P}=0.1490$ Notice that the standard deviation of P is less than both A and B's standard deviation. This shows how diversification can lower risk.

