Portfolios and Diversification

Let P be a \$100 portfolio with \$50 invested in A and \$50 in B.

• Therefore P is an equal-weighted portfolio in A and B. So:

 $x_A = 0.5, \quad x_B = 0.5$

- Return will be exactly halfway at 0.15.
- Standard deviation is likely to be less than halfway (0.2) due to diversification - we didn't "put all of our eggs in one basket".
- So P will be somewhere along the dashed red line. The standard deviation of P depends on the correlation between A and B.

How Correlation Affects Diversification

- $\rho_{A,B} = -1$, lots of diversification since A and B move in opposite directions.
- $\rho_{A,B} = 0$, diversification since A and B move independently and will sometimes cancel each other out.

• $\rho_{A,B} = 1$, no diversification at all since A and B move with each other in the same ratio. In this case $\sigma_P = 0.2$.

Portfolio Return and Variance

Portfolio return for *n* stocks with weights *x*:

$$r_P = x_1 \cdot r_1 + x_2 \cdot r_2 + \dots + x_n \cdot r_n = \sum_{i=1}^n (x_i \cdot r_i)$$

Note that the weights must sum to one:

$$x_1 + x_2 + \dots + x_n = 1$$

Portfolio variance for **2** stocks with weights x_1 and x_2 :

$$\sigma_P^2 = x_1^2 \cdot \sigma_1^2 + x_2^2 \cdot \sigma_2^2 + 2 \cdot x_1 \cdot x_2 \cdot \sigma_{1,2}$$

Portfolio Return and Variance Example

Question: Portfolio P in the diagram has a weight of 0.5 in A and 0.5 in B. The correlation between A and B is 0.05. Find the return and variance of portfolio P.

Answer:

$$r_P = x_A \cdot r_A + x_B \cdot r_B$$

= 0.5 × 0.2 + 0.5 × 0.1
= 0.15

Since $\rho_{A,B} = 0.05$, portfolio variance is: $\sigma_P^2 = x_A^2 \cdot \sigma_A^2 + x_B^2 \cdot \sigma_B^2 + 2 \cdot x_A \cdot x_B \cdot \sigma_{A,B}$ and $\sigma_{A,B} = \rho_{A,B} \cdot \sigma_A \cdot \sigma_B$ So: $\sigma_P{}^2 = x_A^2 \cdot \sigma_A^2 + x_B^2 \cdot \sigma_B^2 + 2 \cdot x_A \cdot x_B \cdot \rho_{A,B} \cdot \sigma_A \cdot \sigma_B$ $= 0.5^2 \times 0.25^2 + 0.5^2 \times 0.15^2 +$ $+2 \times 0.5 \times 0.5 \times 0.05 \times 0.25 \times 0.15$ $\sigma_P{}^2 = 0.0221875$

 $\sigma_P = 0.1490$ Notice that the standard deviation of P is less than both A and B's standard deviation. This shows how diversification can lower risk.