Constructing the 2-stock Markowitz Bullet

- In a two-stock world, the combination line is the Markowitz bullet.
- The line passes through the 2 stocks on the returnstandard deviation graph.

Calculation Example

Q) Using the information in the diagram, find the variance of a portfolio with a target return of 0.18 . Assume $\rho_{1,2}=0.3$.
A) There are 2 steps:

1) Find the weight in stock 1 that yields the given return using the portfolio return equation:
$r_{P}=x_{1} \cdot r_{1}+x_{2} \cdot r_{2}$
Together with the 'weights sum to one' equation:
$x_{1}+x_{2}=1$, so $\quad x_{2}=1-x_{1}$
So,
$r_{P}=x_{1} \cdot r_{1}+\left(1-x_{1}\right) \cdot r_{2}$
$0.18=x_{1} \times 0.1+\left(1-x_{1}\right) \times 0.2$
After solving to find x_{1},
$x_{1}=0.2$
Therefore
$x_{2}=1-0.2=0.8$
These weights make sense since the target return of 0.18 is between stock 1 and 2's returns so we should be long both stocks, which we are since both weights are positive.
2) Now calculate the portfolio variance by substituting the weights x_{1} and x_{2} into the portfolio variance equation:

$$
\begin{aligned}
\sigma_{P}^{2} & =x_{1}^{2} \cdot \sigma_{1}^{2}+x_{2}^{2} \cdot \sigma_{2}^{2}+2 . x_{1} \cdot x_{2} \cdot \rho_{1,2} \cdot \sigma_{1} \cdot \sigma_{2} \\
& =\begin{array}{c}
0.2^{2} \times 0.15^{2}+0.8^{2} \times 0.25^{2}+ \\
\\
\end{array}=0.04450 .2 \times 0.8 \times 0.3 \times 0.15 \times 0.25 \\
\sigma_{P} & =0.2110
\end{aligned}
$$

