Portfolios of 3 or More Stocks

- Portfolios of only 2 stocks are restricted to a combination line. The combination line comprising stocks A and B is shown in black.
- After adding stock C, a whole area of portfolios are possible. There is a portfolio possibility 'cloud', which is the grey area in the graph.

Constructing the 3+ Stock Markowitz Bullet

This requires a formula for multi-stock portfolio variance.

	x_{1}	x_{2}	x_{3}	x_{4}
x_{1}	$\sigma_{1}{ }^{2}$	$\sigma_{1,2}$	$\sigma_{1,3}$	$\sigma_{1,4}$
x_{2}	$\sigma_{2,1}$	$\sigma_{2}{ }^{2}$	$\sigma_{2,3}$	$\sigma_{2,4}$
x_{3}	$\sigma_{3,1}$	$\sigma_{3,2}$	$\sigma_{3}{ }^{2}$	$\sigma_{3,4}$
x_{4}	$\sigma_{4,1}$	$\sigma_{4,2}$	$\sigma_{4,3}$	$\sigma_{4}{ }^{2}$

The grey-shaded part of the table is called the variance-covariance matrix. It has the variance of each stock along the diagonal, and covariances elsewhere.

Note that $\sigma_{1,2}=\sigma_{2,1}$ and $\sigma_{1,1}=\sigma_{1}^{2}$
Portfolio variance is equal to the sum of each term in the variance-covariance matrix multiplied by its corresponding two weights.
${\sigma_{P}}^{2}=x_{1} x_{1} \sigma_{1,1}+x_{1} x_{2} \sigma_{1,2}+\cdots+x_{4} x_{3} \sigma_{4,3}+x_{4} x_{4} \sigma_{4,4}$

After collecting like terms and re-arranging, we have the 4stock portfolio variance equation:

$$
\begin{aligned}
\sigma_{P}^{2}= & x_{1}^{2} \sigma_{1}^{2}+x_{2}^{2} \sigma_{2}^{2}+x_{3}^{2} \sigma_{3}^{2}+x_{4}^{2} \sigma_{4}^{2}+ \\
& 2 x_{1} x_{2} \sigma_{1,2}+2 x_{1} x_{3} \sigma_{1,3}+2 x_{1} x_{4} \sigma_{1,4}+ \\
& 2 x_{2} x_{3} \sigma_{2,3}+2 x_{2} x_{4} \sigma_{2,4}+ \\
& 2 x_{3} x_{4} \sigma_{3,4}
\end{aligned}
$$

Here's the 3 -stock portfolio variance equation:

$$
\begin{aligned}
\sigma_{P}^{2}= & x_{1}^{2} \sigma_{1}^{2}+x_{2}^{2} \sigma_{2}^{2}+x_{3}^{2} \sigma_{3}^{2} \\
& 2 x_{1} x_{2} \sigma_{1,2}+2 x_{1} x_{3} \sigma_{1,3}+ \\
& 2 x_{2} x_{3} \sigma_{2,3}
\end{aligned}
$$

