Fight Finance

Courses  Tags  Random  All  Recent  Scores

Scores
keithphw$5,721.61
Visitor$980.00
Gisele$936.78
aurora$629.43
Visitor$464.00
Visitor$460.00
Visitor$410.00
Visitor$400.00
Visitor$390.00
Visitor$310.00
Visitor$250.00
Visitor$247.00
Visitor$220.00
Visitor$220.00
lukeh$199.09
Visitor$190.00
Visitor$190.00
Visitor$170.00
Visitor$170.00
Visitor$160.00
 

Question 779  mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

Fred owns some BHP shares. He has calculated BHP’s monthly returns for each month in the past 30 years using this formula:

###r_\text{t monthly}=\ln⁡ \left( \dfrac{P_t}{P_{t-1}} \right)###

He then took the arithmetic average and found it to be 0.8% per month using this formula:

###\bar{r}_\text{monthly}= \dfrac{ \displaystyle\sum\limits_{t=1}^T{\left( r_\text{t monthly} \right)} }{T} =0.008=0.8\% \text{ per month}###

He also found the standard deviation of these monthly returns which was 15% per month:

###\sigma_\text{monthly} = \dfrac{ \displaystyle\sum\limits_{t=1}^T{\left( \left( r_\text{t monthly} - \bar{r}_\text{monthly} \right)^2 \right)} }{T} =0.15=15\%\text{ per month}###

Assume that the past historical average return is the true population average of future expected returns and the stock's returns calculated above ##(r_\text{t monthly})## are normally distributed. Which of the below statements about Fred’s BHP shares is NOT correct?




Copyright © 2014 Keith Woodward