Fight Finance

Courses  Tags  Random  All  Recent  Scores

Question 834  option, delta, theta, gamma, standard deviation, Black-Scholes-Merton option pricing

Which of the following statements about an option (either a call or put) and its underlying stock is NOT correct?

European Call Option
on a non-dividend paying stock
Description Symbol Quantity
Spot price ($) ##S_0## 20
Strike price ($) ##K_T## 18
Risk free cont. comp. rate (pa) ##r## 0.05
Standard deviation of the stock's cont. comp. returns (pa) ##\sigma## 0.3
Option maturity (years) ##T## 1
Call option price ($) ##c_0## 3.939488
Delta ##\Delta = N[d_1]## 0.747891
##N[d_2]## ##N[d_2]## 0.643514
Gamma ##\Gamma## 0.053199
Theta ($/year) ##\Theta = \partial c / \partial T## 1.566433
 

 



Question 651  future

Which of the following statements about futures is NOT correct?



Question 643  future, no explanation

A trader buys one crude oil futures contract on the CME expiring in one year with a locked-in futures price of $38.94 per barrel. If the trader doesn’t close out her contract before expiry then in one year she will have the:



Question 684  future, arbitrage, no explanation

An equity index stands at 100 points and the one year equity futures price is 102.

The equity index is expected to have a dividend yield of 4% pa. Assume that investors are risk-neutral so their total required return on the shares is the same as the risk free Treasury bond yield which is 10% pa. Both are given as discrete effective annual rates.

Assuming that the equity index is fairly priced, an arbitrageur would recognise that the equity futures are:



Question 680  option, no explanation

A trader buys one crude oil European style put option contract on the CME expiring in one year with an exercise price of $44 per barrel for a price of $6.64. The crude oil spot price is $40.33. If the trader doesn’t close out her contract before maturity, then at maturity she will have the:



Question 865  option, Black-Scholes-Merton option pricing

A one year European-style call option has a strike price of $4.

The option's underlying stock currently trades at $5, pays no dividends and its standard deviation of continuously compounded returns is 47% pa.

The risk-free interest rate is 10% pa continuously compounded.

Use the Black-Scholes-Merton formula to calculate the option price. The call option price now is:



Question 866  option, Black-Scholes-Merton option pricing

A one year European-style put option has a strike price of $4.

The option's underlying stock currently trades at $5, pays no dividends and its standard deviation of continuously compounded returns is 47% pa.

The risk-free interest rate is 10% pa continuously compounded.

Use the Black-Scholes-Merton formula to calculate the option price. The put option price now is:



Question 904  option, Black-Scholes-Merton option pricing, option on future on stock index

A six month European-style call option on six month S&P500 index futures has a strike price of 2800 points.

The six month futures price on the S&P500 index is currently at 2740.805274 points. The futures underlie the call option.

The S&P500 stock index currently trades at 2700 points. The stock index underlies the futures. The stock index's standard deviation of continuously compounded returns is 25% pa.

The risk-free interest rate is 5% pa continuously compounded.

Use the Black-Scholes-Merton formula to calculate the option price. The call option price now is: