Fight Finance

Courses  Tags  Random  All  Recent  Scores

Scores
keithphw$6,001.61
Yuan$1,726.43
Zin$1,619.43
Jade$1,555.80
Carolll$1,522.43
Visitor$1,428.33
Visitor$1,373.33
zy$1,349.70
cuiting$1,289.70
Visitor$1,268.61
Visitor$1,251.28
Visitor$1,249.70
Visitor$1,153.33
Emma Lu$1,100.00
Skywalke...$1,070.00
mm11$1,050.33
ninalee$1,039.70
Visitor$1,035.61
Visitor$1,024.70
Doris$1,009.70
 

Question 793  option, hedging, delta hedging, gamma hedging, gamma, Black-Scholes-Merton option pricing

A bank buys 1000 European put options on a $10 non-dividend paying stock at a strike of $12. The bank wishes to hedge this exposure. The bank can trade the underlying stocks and European call options with a strike price of 7 on the same stock with the same maturity. Details of the call and put options are given in the table below. Each call and put option is on a single stock.

European Options on a Non-dividend Paying Stock
Description Symbol Put Values Call Values
Spot price ($) ##S_0## 10 10
Strike price ($) ##K_T## 12 7
Risk free cont. comp. rate (pa) ##r## 0.05 0.05
Standard deviation of the stock's cont. comp. returns (pa) ##\sigma## 0.4 0.4
Option maturity (years) ##T## 1 1
Option price ($) ##p_0## or ##c_0## 2.495350486 3.601466138
##N[d_1]## ##\partial c/\partial S##   0.888138405
##N[d_2]## ##N[d_2]##   0.792946442
##-N[-d_1]## ##\partial p/\partial S## -0.552034778  
##N[-d_2]## ##N[-d_2]## 0.207053558  
Gamma ##\Gamma = \partial^2 c/\partial S^2## or ##\partial^2 p/\partial S^2## 0.098885989 0.047577422
Theta ##\Theta = \partial c/\partial T## or ##\partial p/\partial T## 0.348152078 0.672379961
 

 

Which of the following statements is NOT correct?



Question 794  option, Black-Scholes-Merton option pricing, option delta, no explanation

Which of the following quantities from the Black-Scholes-Merton option pricing formula gives the Delta of a European call option?


Where:

###d_1=\dfrac{\ln⁡[S_0/K]+(r+\sigma^2/2).T)}{\sigma.\sqrt{T}}### ###d_2=d_1-\sigma.\sqrt{T}=\dfrac{\ln⁡[S_0/K]+(r-\sigma^2/2).T)}{\sigma.\sqrt{T}}###

Question 795  option, Black-Scholes-Merton option pricing, option delta, no explanation

Which of the following quantities from the Black-Scholes-Merton option pricing formula gives the Delta of a European put option?



Question 796  option, Black-Scholes-Merton option pricing, option delta, no explanation

Which of the following quantities from the Black-Scholes-Merton option pricing formula gives the risk-neutral probability that a European call option will be exercised?



Question 797  option, Black-Scholes-Merton option pricing, option delta, no explanation

Which of the following quantities from the Black-Scholes-Merton option pricing formula gives the risk-neutral probability that a European put option will be exercised?



Question 832  option, Black-Scholes-Merton option pricing, no explanation

A 12 month European-style call option with a strike price of $11 is written on a dividend paying stock currently trading at $10. The dividend is paid annually and the next dividend is expected to be $0.40, paid in 9 months. The risk-free interest rate is 5% pa continuously compounded and the standard deviation of the stock’s continuously compounded returns is 30% pa. The stock's continuously compounded returns are normally distributed. Using the Black-Scholes-Merton option valuation model, determine which of the following statements is NOT correct.



Question 834  option, delta, theta, gamma, standard deviation, Black-Scholes-Merton option pricing

Which of the following statements about an option (either a call or put) and its underlying stock is NOT correct?

European Call Option
on a non-dividend paying stock
Description Symbol Quantity
Spot price ($) ##S_0## 20
Strike price ($) ##K_T## 18
Risk free cont. comp. rate (pa) ##r## 0.05
Standard deviation of the stock's cont. comp. returns (pa) ##\sigma## 0.3
Option maturity (years) ##T## 1
Call option price ($) ##c_0## 3.939488
Delta ##\Delta = N[d_1]## 0.747891
##N[d_2]## ##N[d_2]## 0.643514
Gamma ##\Gamma## 0.053199
Theta ($/year) ##\Theta = \partial c / \partial T## 1.566433
 

 



Question 865  option, Black-Scholes-Merton option pricing

A one year European-style call option has a strike price of $4.

The option's underlying stock currently trades at $5, pays no dividends and its standard deviation of continuously compounded returns is 47% pa.

The risk-free interest rate is 10% pa continuously compounded.

Use the Black-Scholes-Merton formula to calculate the option price. The call option price now is:



Question 866  option, Black-Scholes-Merton option pricing

A one year European-style put option has a strike price of $4.

The option's underlying stock currently trades at $5, pays no dividends and its standard deviation of continuously compounded returns is 47% pa.

The risk-free interest rate is 10% pa continuously compounded.

Use the Black-Scholes-Merton formula to calculate the option price. The put option price now is:



Question 903  option, Black-Scholes-Merton option pricing, option on stock index

A six month European-style call option on the S&P500 stock index has a strike price of 2800 points.

The underlying S&P500 stock index currently trades at 2700 points, has a continuously compounded dividend yield of 2% pa and a standard deviation of continuously compounded returns of 25% pa.

The risk-free interest rate is 5% pa continuously compounded.

Use the Black-Scholes-Merton formula to calculate the option price. The call option price now is:



Question 904  option, Black-Scholes-Merton option pricing, option on future on stock index

A six month European-style call option on six month S&P500 index futures has a strike price of 2800 points.

The six month futures price on the S&P500 index is currently at 2740.805274 points. The futures underlie the call option.

The S&P500 stock index currently trades at 2700 points. The stock index underlies the futures. The stock index's standard deviation of continuously compounded returns is 25% pa.

The risk-free interest rate is 5% pa continuously compounded.

Use the Black-Scholes-Merton formula to calculate the option price. The call option price now is:




Copyright © 2014 Keith Woodward