A student just won the lottery. She won $1 million in cash after tax. She is trying to calculate how much she can spend per month for the rest of her life. She assumes that she will live for another 60 years. She wants to withdraw equal amounts at the beginning of every month, starting right now.

All of the cash is currently sitting in a bank account which pays interest at a rate of 6% pa, given as an APR compounding per month. On her last withdrawal, she intends to have nothing left in her bank account. How much can she withdraw at the beginning of each month?

**Question 244** CAPM, SML, NPV, risk

Examine the following graph which shows stocks' betas ##(\beta)## and expected returns ##(\mu)##:

Assume that the CAPM holds and that future expectations of stocks' returns and betas are correctly measured. Which statement is **NOT** correct?

Suppose you had $100 in a savings account and the interest rate was 2% per year.

After 5 years, how much do you think you would have in the account if you left the money to grow?

**Question 442** economic depreciation, no explanation

A fairly valued share's current price is $**4** and it has a total required return of **30**%. Dividends are paid annually and next year's dividend is expected to be $1. After that, dividends are expected to grow by **5**% pa. All rates are effective annual returns.

What is the expected dividend cash flow, economic depreciation, and economic income and economic value added (EVA) that will be earned over the second year (from t=**1** to t=**2**) and paid at the end of that year (t=**2**)?

**Question 719** mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

A stock has an arithmetic average continuously compounded return (AALGDR) of **10**% pa, a standard deviation of continuously compounded returns (SDLGDR) of **80**% pa and current stock price of $**1**. Assume that stock prices are log-normally distributed.

In **one** year, what do you expect the mean and median prices to be? The answer options are given in the same order.

**Question 776** market efficiency, systematic and idiosyncratic risk, beta, income and capital returns

Which of the following statements about returns is **NOT** correct? A stock's:

**Question 779** mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

Fred owns some BHP shares. He has calculated BHP’s monthly returns for each month in the past 30 years using this formula:

###r_\text{t monthly}=\ln \left( \dfrac{P_t}{P_{t-1}} \right)###He then took the arithmetic average and found it to be **0.8**% per month using this formula:

He also found the standard deviation of these monthly returns which was **15**% per month:

Assume that the past historical average return is the true population average of future expected returns and the stock's returns calculated above ##(r_\text{t monthly})## are normally distributed. Which of the below statements about Fred’s BHP shares is **NOT** correct?

The below graph from the RBA shows the phase-in of the Basel 3 minimum regulatory capital requirements under the Basel Committee on Banking Supervision (BCBS) on the left panel and in Australia under the Australian Prudential Regulatory Authority (APRA) on the right panel.

Which of the following statements about the Basel 3 minimum regulatory capital requirements as at 2019 is **NOT** correct? All minimum amounts exclude the 2.5% counter-cyclical buffer.

The Basel 3 minimum regulatory capital requirement as a percent of Risk Weighted Assets (RWA) is:

**Question 903** option, Black-Scholes-Merton option pricing, option on stock index

A **six** month European-style **call** option on the S&P500 stock index has a strike price of **2800** points.

The underlying S&P500 stock index currently trades at **2700** points, has a continuously compounded dividend yield of **2**% pa and a standard deviation of continuously compounded returns of **25**% pa.

The risk-free interest rate is **5**% pa continuously compounded.

Use the Black-Scholes-Merton formula to calculate the option price. The call option price now is:

**Question 965** foreign exchange reserve, foreign exchange rate, no explanation

Observe the below graph of Chinese foreign exchange reserves held by the central bank, as well as the Chinese currency the Yuan (CNY, also called the Renminbi, RMB) against the US Dollar. Note the inverted y-axis scale on the Yuan exchange rate graph.

Which of the below statements is **NOT** correct?