Fight Finance

Courses  Tags  Random  All  Recent  Scores

Question 916  future, future valuation

A stock is expected to pay its semi-annual dividend of $1 per share for the foreseeable future. The current stock price is $40 and the continuously compounded risk free rate is 3% pa for all maturities. An investor has just taken a long position in a 12-month futures contract on the stock. The last dividend payment was exactly 4 months ago. Therefore the next $1 dividend is in 2 months, and the $1 dividend after is 8 months from now. Which of the following statements about this scenario is NOT correct?



Question 651  future

Which of the following statements about futures is NOT correct?



Question 590  future, market efficiency

Which of the following statements about futures contracts on shares is NOT correct, assuming that markets are efficient?

When an equity future is first negotiated (at t=0):



Question 597  future, continuously compounding rate

A stock is expected to pay a dividend of $5 per share in 1 month and $5 again in 7 months.

The stock price is $100, and the risk-free rate of interest is 10% per annum with continuous compounding. The yield curve is flat. Assume that investors are risk-neutral.

An investor has just taken a short position in a one year forward contract on the stock.

Find the forward price ##(F_1)## and value of the contract ##(V_0)## initially. Also find the value of the short futures contract in 6 months ##(V_\text{0.5, SF})## if the stock price fell to $90.



Question 432  option, option intrinsic value, no explanation

An American style call option with a strike price of ##K## dollars will mature in ##T## years. The underlying asset has a price of ##S## dollars.

What is an expression for the current intrinsic value in dollars from owning (being long) the American style call option? Note that the intrinsic value of an option does not subtract the premium paid to buy the option.



Question 584  option, option payoff at maturity, option profit

Which of the following statements about European call options on non-dividend paying stocks is NOT correct?



Question 271  CAPM, option, risk, systematic risk, systematic and idiosyncratic risk

All things remaining equal, according to the capital asset pricing model, if the systematic variance of an asset increases, its required return will increase and its price will decrease.
If the idiosyncratic variance of an asset increases, its price will be unchanged.

What is the relationship between the price of a call or put option and the total, systematic and idiosyncratic variance of the underlying asset that the option is based on? Select the most correct answer.

Call and put option prices increase when the:



Question 671  future, forward, hedging

It's possible for both parties in a futures or forward contract to be hedging, so neither are speculating. or ?


Question 827  future, basis risk, no explanation

You intend to use futures on oil to hedge the risk of purchasing oil. There is no cross-hedging risk. Oil pays no dividends but it’s costly to store. Which of the following statements about basis risk in this scenario is NOT correct?



Question 653  future, continuously compounding rate

An equity index is currently at 4,800 points. The 1.5 year futures price is 5,100 points and the total required return is 6% pa with continuous compounding. Each index point is worth $25.

What is the implied dividend yield as a continuously compounded rate per annum?



Question 824  option, no explanation

A put option written on a risky non-dividend paying stock will mature in one month. As is normal, assume that the option's exercise price is non-zero and positive ##(K>0)## and the stock has limited liability ##(S>0)##.

Which of the following statements is NOT correct? The put option's:



Question 820  option, future, no explanation

What derivative position are you exposed to if you have the obligation to sell the underlying asset at maturity, so you will definitely be forced to sell the underlying asset?



Question 822  option, sunk cost, no explanation

When does a European option's last-traded market price become a sunk cost?



Question 829  option, future, delta, gamma, theta, no explanation

Below are some statements about futures and European-style options on non-dividend paying stocks. Assume that the risk free rate is always positive. Which of these statements is NOT correct? All other things remaining equal:



Question 832  option, Black-Scholes-Merton option pricing

A 12 month European-style call option with a strike price of $11 is written on a dividend paying stock currently trading at $10. The dividend is paid annually and the next dividend is expected to be $0.40, paid in 9 months. The risk-free interest rate is 5% pa continuously compounded and the standard deviation of the stock’s continuously compounded returns is 30 percentage points pa. The stock's continuously compounded returns are normally distributed. Using the Black-Scholes-Merton option valuation model, determine which of the following statements is NOT correct.



Question 834  option, delta, theta, gamma, standard deviation, Black-Scholes-Merton option pricing

Which of the following statements about an option (either a call or put) and its underlying stock is NOT correct?

European Call Option
on a non-dividend paying stock
Description Symbol Quantity
Spot price ($) ##S_0## 20
Strike price ($) ##K_T## 18
Risk free cont. comp. rate (pa) ##r## 0.05
Standard deviation of the stock's cont. comp. returns (pa) ##\sigma## 0.3
Option maturity (years) ##T## 1
Call option price ($) ##c_0## 3.939488
Delta ##\Delta = N[d_1]## 0.747891
##N[d_2]## ##N[d_2]## 0.643514
Gamma ##\Gamma## 0.053199
Theta ($/year) ##\Theta = \partial c / \partial T## 1.566433
 

 



Question 839  option, put call parity

A stock, a call, a put and a bond are available to trade. The call and put options' underlying asset is the stock they and have the same strike prices, ##K_T##.

You are currently long the stock. You want to hedge your long stock position without actually trading the stock. How would you do this?



Question 866  option, Black-Scholes-Merton option pricing

A one year European-style put option has a strike price of $4.

The option's underlying stock currently trades at $5, pays no dividends and its standard deviation of continuously compounded returns is 47% pa.

The risk-free interest rate is 10% pa continuously compounded.

Use the Black-Scholes-Merton formula to calculate the option price. The put option price now is:



Question 715  return distribution

If a variable, say X, is normally distributed with mean ##\mu## and variance ##\sigma^2## then mathematicians write ##X \sim \mathcal{N}(\mu, \sigma^2)##.

If a variable, say Y, is log-normally distributed and the underlying normal distribution has mean ##\mu## and variance ##\sigma^2## then mathematicians write ## Y \sim \mathbf{ln} \mathcal{N}(\mu, \sigma^2)##.

The below three graphs show probability density functions (PDF) of three different random variables Red, Green and Blue.

PDF graph

Select the most correct statement:



Question 722  mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

Here is a table of stock prices and returns. Which of the statements below the table is NOT correct?

Price and Return Population Statistics
Time Prices LGDR GDR NDR
0 100      
1 50 -0.6931 0.5 -0.5
2 100 0.6931 2 1
 
Arithmetic average 0 1.25 0.25
Arithmetic standard deviation 0.9802 1.0607 1.0607
 

 



Question 792  mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate, log-normal distribution, confidence interval

A risk manager has identified that their investment fund’s continuously compounded portfolio returns are normally distributed with a mean of 10% pa and a standard deviation of 40% pa. The fund’s portfolio is currently valued at $1 million. Assume that there is no estimation error in the above figures. To simplify your calculations, all answers below use 2.33 as an approximation for the normal inverse cumulative density function at 99%. All answers are rounded to the nearest dollar. Assume one month is 1/12 of a year. Which of the following statements is NOT correct?



Question 925  mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate, no explanation

The arithmetic average and standard deviation of returns on the ASX200 accumulation index over the 24 years from 31 Dec 1992 to 31 Dec 2016 were calculated as follows:

###\bar{r}_\text{yearly} = \dfrac{ \displaystyle\sum\limits_{t=1992}^{24}{\left( \ln⁡ \left( \dfrac{P_{t+1}}{P_t} \right) \right)} }{T} = \text{AALGDR} =0.0949=9.49\% \text{ pa}###

###\sigma_\text{yearly} = \dfrac{ \displaystyle\sum\limits_{t=1992}^{24}{\left( \left( \ln⁡ \left( \dfrac{P_{t+1}}{P_t} \right) - \bar{r}_\text{yearly} \right)^2 \right)} }{T} = \text{SDLGDR} = 0.1692=16.92\text{ pp pa}###

Assume that the log gross discrete returns are normally distributed and that the above estimates are true population statistics, not sample statistics, so there is no standard error in the sample mean or standard deviation estimates. Also assume that the standardised normal Z-statistic corresponding to a one-tail probability of 2.5% is exactly -1.96.

Which of the following statements is NOT correct? If you invested $1m today in the ASX200, then over the next 4 years:



Question 926  mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

The arithmetic average continuously compounded or log gross discrete return (AALGDR) on the ASX200 accumulation index over the 24 years from 31 Dec 1992 to 31 Dec 2016 is 9.49% pa.

The arithmetic standard deviation (SDLGDR) is 16.92 percentage points pa.

Assume that the log gross discrete returns are normally distributed and that the above estimates are true population statistics, not sample statistics, so there is no standard error in the sample mean or standard deviation estimates. Also assume that the standardised normal Z-statistic corresponding to a one-tail probability of 2.5% is exactly -1.96.

If you had a $1 million fund that replicated the ASX200 accumulation index, in how many years would the median dollar value of your fund first be expected to lie outside the 95% confidence interval forecast?



Question 927  mean and median returns, mode return, return distribution, arithmetic and geometric averages, continuously compounding rate

The arithmetic average continuously compounded or log gross discrete return (AALGDR) on the ASX200 accumulation index over the 24 years from 31 Dec 1992 to 31 Dec 2016 is 9.49% pa.

The arithmetic standard deviation (SDLGDR) is 16.92 percentage points pa.

Assume that the log gross discrete returns are normally distributed and that the above estimates are true population statistics, not sample statistics, so there is no standard error in the sample mean or standard deviation estimates. Also assume that the standardised normal Z-statistic corresponding to a one-tail probability of 2.5% is exactly -1.96.

If you had a $1 million fund that replicated the ASX200 accumulation index, in how many years would the mean dollar value of your fund first be expected to lie outside the 95% confidence interval forecast?



Question 928  mean and median returns, mode return, return distribution, arithmetic and geometric averages, continuously compounding rate, no explanation

The arithmetic average continuously compounded or log gross discrete return (AALGDR) on the ASX200 accumulation index over the 24 years from 31 Dec 1992 to 31 Dec 2016 is 9.49% pa.

The arithmetic standard deviation (SDLGDR) is 16.92 percentage points pa.

Assume that the log gross discrete returns are normally distributed and that the above estimates are true population statistics, not sample statistics, so there is no standard error in the sample mean or standard deviation estimates. Also assume that the standardised normal Z-statistic corresponding to a one-tail probability of 2.5% is exactly -1.96.

If you had a $1 million fund that replicated the ASX200 accumulation index, in how many years would the mode dollar value of your fund first be expected to lie outside the 95% confidence interval forecast?

Note that the mode of a log-normally distributed future price is: ##P_{T \text{ mode}} = P_0.e^{(\text{AALGDR} - \text{SDLGDR}^2 ).T} ##



Question 785  fixed for floating interest rate swap, non-intermediated swap

The below table summarises the borrowing costs confronting two companies A and B.

Bond Market Yields
  Fixed Yield to Maturity (%pa) Floating Yield (%pa)
Firm A 3 L - 0.4
Firm B 5 L + 1
 

 

Firm A wishes to borrow at a floating rate and Firm B wishes to borrow at a fixed rate. Design a non-intermediated swap that benefits firm A only. What will be the swap rate?



Question 670  fixed for floating interest rate swap

A company can invest funds in a five year project at LIBOR plus 50 basis points pa. The five-year swap rate is 4% pa. What fixed rate of interest can the company earn over the next five years by using the swap?



Question 948  VaR, expected shortfall

Below is a historical sample of returns on the S&P500 capital index.

S&P500 Capital Index Daily Returns
Ranked from Best to Worst
10,000 trading days from 4th August 1977 to
24 March 2017 based on closing prices.
Rank Date
(DD-MM-YY)
Continuously compounded
daily return (% per day)
1 21-10-87 9.23
2 08-03-83 8.97
3 13-11-08 8.3
4 30-09-08 8.09
5 28-10-08 8.01
6 29-10-87 7.28
9980 11-12-08 -5.51
9981 22-10-08 -5.51
9982 08-08-11 -5.54
9983 22-09-08 -5.64
9984 11-09-86 -5.69
9985 30-11-87 -5.88
9986 14-04-00 -5.99
9987 07-10-98 -6.06
9988 08-01-88 -6.51
9989 27-10-97 -6.55
9990 13-10-89 -6.62
9991 15-10-08 -6.71
9992 29-09-08 -6.85
9993 07-10-08 -6.91
9994 14-11-08 -7.64
9995 01-12-08 -7.79
9996 29-10-08 -8.05
9997 26-10-87 -8.4
9998 31-08-98 -8.45
9999 09-10-08 -12.9
10000 19-10-87 -23.36
 
Mean of all 10,000: 0.0354
Sample standard deviation of all 10,000: 1.2062
Sources: Bloomberg and S&P.
 

 

Assume that the one-tail Z-statistic corresponding to a probability of 99.9% is exactly 3.09. Which of the following statements is NOT correct? Based on the historical data, the 99.9% daily:



Question 956  option, Black-Scholes-Merton option pricing, delta hedging, hedging

A bank sells a European call option on a non-dividend paying stock and delta hedges on a daily basis. Below is the result of their hedging, with columns representing consecutive days. Assume that there are 365 days per year and interest is paid daily in arrears.

Delta Hedging a Short Call using Stocks and Debt
 
Description Symbol Days to maturity (T in days)
    60 59 58 57 56 55
Spot price ($) S 10000 10125 9800 9675 10000 10000
Strike price ($) K 10000 10000 10000 10000 10000 10000
Risk free cont. comp. rate (pa) r 0.05 0.05 0.05 0.05 0.05 0.05
Standard deviation of the stock's cont. comp. returns (pa) σ 0.4 0.4 0.4 0.4 0.4 0.4
Option maturity (years) T 0.164384 0.161644 0.158904 0.156164 0.153425 0.150685
Delta N[d1] = dc/dS 0.552416 0.582351 0.501138 0.467885 0.550649 0.550197
Probability that S > K at maturity in risk neutral world N[d2] 0.487871 0.51878 0.437781 0.405685 0.488282 0.488387
Call option price ($) c 685.391158 750.26411 567.990995 501.487157 660.982878 ?
Stock investment value ($) N[d1]*S 5524.164129 5896.301781 4911.152036 4526.788065 5506.488143 ?
Borrowing which partly funds stock investment ($) N[d2]*K/e^(r*T) 4838.772971 5146.037671 4343.161041 4025.300909 4845.505265 ?
Interest expense from borrowing paid in arrears ($) r*N[d2]*K/e^(r*T) 0.662891 0.704985 0.594994 0.551449 ?
Gain on stock ($) N[d1]*(SNew - SOld) 69.052052 -189.264008 -62.642245 152.062648 ?
Gain on short call option ($) -1*(cNew - cOld) -64.872952 182.273114 66.503839 -159.495721 ?
Net gain ($) Gains - InterestExpense 3.516209 -7.695878 3.266599 -7.984522 ?
 
Gamma Γ = d^2c/dS^2 0.000244 0.00024 0.000255 0.00026 0.000253 0.000255
Theta θ = dc/dT 2196.873429 2227.881353 2182.174706 2151.539751 2266.589184 2285.1895
 

 

In the last column when there are 55 days left to maturity there are missing values. Which of the following statements about those missing values is NOT correct?