Fight Finance

CoursesTagsRandomAllRecentScores

One year ago a pharmaceutical firm floated by selling its 1 million shares for $100 each. Its book and market values of equity were both$100m. Its debt totalled $50m. The required return on the firm's assets was 15%, equity 20% and debt 5% pa. In the year since then, the firm: • Earned net income of$29m.
• Paid dividends totaling $10m. • Discovered a valuable new drug that will lead to a massive 1,000 times increase in the firm's net income in 10 years after the research is commercialised. News of the discovery was publicly announced. The firm's systematic risk remains unchanged. Which of the following statements is NOT correct? All statements are about current figures, not figures one year ago. Hint: Book return on assets (ROA) and book return on equity (ROE) are ratios that accountants like to use to measure a business's past performance. $$\text{ROA}= \dfrac{\text{Net income}}{\text{Book value of assets}}$$ $$\text{ROE}= \dfrac{\text{Net income}}{\text{Book value of equity}}$$ The required return on assets $r_V$ is a return that financiers like to use to estimate a business's future required performance which compensates them for the firm's assets' risks. If the business were to achieve realised historical returns equal to its required returns, then investment into the business's assets would have been a zero-NPV decision, which is neither good nor bad but fair. $$r_\text{V, 0 to 1}= \dfrac{\text{Cash flow from assets}_\text{1}}{\text{Market value of assets}_\text{0}} = \dfrac{CFFA_\text{1}}{V_\text{0}}$$ Similarly for equity and debt. A business project is expected to cost$100 now (t=0), then pay $10 at the end of the third (t=3), fourth, fifth and sixth years, and then grow by 5% pa every year forever. So the cash flow will be$10.5 at the end of the seventh year (t=7), then $11.025 at the end of the eighth year (t=8) and so on perpetually. The total required return is 10℅ pa. Which of the following formulas will NOT give the correct net present value of the project? For a price of$1040, Camille will sell you a share which just paid a dividend of $100, and is expected to pay dividends every year forever, growing at a rate of 5% pa. So the next dividend will be $100(1+0.05)^1=105.00$, and the year after it will be $100(1+0.05)^2=110.25$ and so on. The required return of the stock is 15% pa. Would you like to the share or politely ? The following is the Dividend Discount Model (DDM) used to price stocks: $$P_0=\dfrac{C_1}{r-g}$$ If the assumptions of the DDM hold, which one of the following statements is NOT correct? The long term expected: A stock just paid its annual dividend of$9. The share price is $60. The required return of the stock is 10% pa as an effective annual rate. What is the implied growth rate of the dividend per year? A stock will pay you a dividend of$10 tonight if you buy it today. Thereafter the annual dividend is expected to grow by 5% pa, so the next dividend after the $10 one tonight will be$10.50 in one year, then in two years it will be $11.025 and so on. The stock's required return is 10% pa. What is the stock price today and what do you expect the stock price to be tomorrow, approximately? The following is the Dividend Discount Model (DDM) used to price stocks: $$P_0 = \frac{d_1}{r-g}$$ Assume that the assumptions of the DDM hold and that the time period is measured in years. Which of the following is equal to the expected dividend in 3 years, $d_3$? The following equation is the Dividend Discount Model, also known as the 'Gordon Growth Model' or the 'Perpetuity with growth' equation. $$p_0 = \frac{d_1}{r - g}$$ Which expression is NOT equal to the expected dividend yield? An 'interest payment' is the same thing as a 'coupon payment'. or ? Which of the following statements is NOT equivalent to the yield on debt? Assume that the debt being referred to is fairly priced, but do not assume that it's priced at par. Your friend is trying to find the net present value of an investment which: • Costs$1 million initially (t=0); and
• Pays a single positive cash flow of $1.1 million in one year (t=1). The investment has a total required return of 10% pa due to its moderate level of undiversifiable risk. Your friend is aware of the importance of opportunity costs and the time value of money, but he is unsure of how to find the NPV of the project. He knows that the opportunity cost of investing the$1m in the project is the expected gain from investing the money in shares instead. Like the project, shares also have an expected return of 10% since they have moderate undiversifiable risk. This opportunity cost is $0.1m $(=1m \times 10\%)$ which occurs in one year (t=1). He knows that the time value of money should be accounted for, and this can be done by finding the present value of the cash flows in one year. Your friend has listed a few different ways to find the NPV which are written down below. Method 1: $-1m + \dfrac{1.1m}{(1+0.1)^1}$ Method 2: $-1m + 1.1m - 1m \times 0.1$ Method 3: $-1m + \dfrac{1.1m}{(1+0.1)^1} - 1m \times 0.1$ Which of the above calculations give the correct NPV? Select the most correct answer. What is the net present value (NPV) of undertaking a full-time Australian undergraduate business degree as an Australian citizen? Only include the cash flows over the duration of the degree, ignore any benefits or costs of the degree after it's completed. Assume the following: • The degree takes 3 years to complete and all students pass all subjects. • There are 2 semesters per year and 4 subjects per semester. • University fees per subject per semester are$1,277, paid at the start of each semester. Fees are expected to remain constant in real terms for the next 3 years.
• There are 52 weeks per year.
• The first semester is just about to start (t=0). The first semester lasts for 19 weeks (t=0 to 19).
• The second semester starts immediately afterwards (t=19) and lasts for another 19 weeks (t=19 to 38).
• The summer holidays begin after the second semester ends and last for 14 weeks (t=38 to 52). Then the first semester begins the next year, and so on.
• Working full time at the grocery store instead of studying full-time pays $20/hr and you can work 35 hours per week. Wages are paid at the end of each week and are expected to remain constant in real terms. • Full-time students can work full-time during the summer holiday at the grocery store for the same rate of$20/hr for 35 hours per week.
• The discount rate is 9.8% pa. All rates and cash flows are real. Inflation is expected to be 3% pa. All rates are effective annual.

The NPV of costs from undertaking the university degree is:

A European bond paying annual coupons of 6% offers a yield of 10% pa.

Convert the yield into an effective monthly rate, an effective annual rate and an effective daily rate. Assume that there are 365 days in a year.

All answers are given in the same order:

$$r_\text{eff, monthly} , r_\text{eff, yearly} , r_\text{eff, daily}$$

In Germany, nominal yields on semi-annual coupon paying Government Bonds with 2 years until maturity are currently 0.04% pa.

The inflation rate is currently 1.4% pa, given as an APR compounding per quarter. The inflation rate is not expected to change over the next 2 years.

What is the real yield on these bonds, given as an APR compounding every 6 months?

Calculate the price of a newly issued ten year bond with a face value of $100, a yield of 8% pa and a fixed coupon rate of 6% pa, paid annually. So there's only one coupon per year, paid in arrears every year. For a price of$100, Vera will sell you a 2 year bond paying semi-annual coupons of 10% pa. The face value of the bond is $100. Other bonds with similar risk, maturity and coupon characteristics trade at a yield of 8% pa. Would you like to her bond or politely ? The coupon rate of a fixed annual-coupon bond is constant (always the same). What can you say about the income return ($r_\text{income}$) of a fixed annual coupon bond? Remember that: $$r_\text{total} = r_\text{income} + r_\text{capital}$$ $$r_\text{total, 0 to 1} = \frac{c_1}{p_0} + \frac{p_1-p_0}{p_0}$$ Assume that there is no change in the bond's total annual yield to maturity from when it is issued to when it matures. Select the most correct statement. From its date of issue until maturity, the income return of a fixed annual coupon: An investor bought two fixed-coupon bonds issued by the same company, a zero-coupon bond and a 7% pa semi-annual coupon bond. Both bonds have a face value of$1,000, mature in 10 years, and had a yield at the time of purchase of 8% pa.

A few years later, yields fell to 6% pa. Which of the following statements is correct? Note that a capital gain is an increase in price.

In these tough economic times, central banks around the world have cut interest rates so low that they are practically zero. In some countries, government bond yields are also very close to zero.

A three year government bond with a face value of $100 and a coupon rate of 2% pa paid semi-annually was just issued at a yield of 0%. What is the price of the bond? There are many different ways to value a firm's assets. Which of the following will NOT give the correct market value of a levered firm's assets $(V_L)$? Assume that: • The firm is financed by listed common stock and vanilla annual fixed coupon bonds, which are both traded in a liquid market. • The bonds' yield is equal to the coupon rate, so the bonds are issued at par. The yield curve is flat and yields are not expected to change. When bonds mature they will be rolled over by issuing the same number of new bonds with the same expected yield and coupon rate, and so on forever. • Tax rates on the dividends and capital gains received by investors are equal, and capital gains tax is paid every year, even on unrealised gains regardless of when the asset is sold. • There is no re-investment of the firm's cash back into the business. All of the firm's excess cash flow is paid out as dividends so real growth is zero. • The firm operates in a mature industry with zero real growth. • All cash flows and rates in the below equations are real (not nominal) and are expected to be stable forever. Therefore the perpetuity equation with no growth is suitable for valuation. Where: $$r_\text{WACC before tax} = r_D.\frac{D}{V_L} + r_{EL}.\frac{E_L}{V_L} = \text{Weighted average cost of capital before tax}$$ $$r_\text{WACC after tax} = r_D.(1-t_c).\frac{D}{V_L} + r_{EL}.\frac{E_L}{V_L} = \text{Weighted average cost of capital after tax}$$ $$NI_L=(Rev-COGS-FC-Depr-\mathbf{IntExp}).(1-t_c) = \text{Net Income Levered}$$ $$CFFA_L=NI_L+Depr-CapEx - \varDelta NWC+\mathbf{IntExp} = \text{Cash Flow From Assets Levered}$$ $$NI_U=(Rev-COGS-FC-Depr).(1-t_c) = \text{Net Income Unlevered}$$ $$CFFA_U=NI_U+Depr-CapEx - \varDelta NWC= \text{Cash Flow From Assets Unlevered}$$ A company increases the proportion of debt funding it uses to finance its assets by issuing bonds and using the cash to repurchase stock, leaving assets unchanged. Ignoring the costs of financial distress, which of the following statements is NOT correct: Which one of the following will decrease net income (NI) but increase cash flow from assets (CFFA) in this year for a tax-paying firm, all else remaining constant? Remember: $$NI = (Rev-COGS-FC-Depr-IntExp).(1-t_c )$$ $$CFFA=NI+Depr-CapEx - \Delta NWC+IntExp$$ Over the next year, the management of an unlevered company plans to: • Achieve firm free cash flow (FFCF or CFFA) of$1m.
• Pay dividends of $1.8m • Complete a$1.3m share buy-back.
• Spend $0.8m on new buildings without buying or selling any other fixed assets. This capital expenditure is included in the CFFA figure quoted above. Assume that: • All amounts are received and paid at the end of the year so you can ignore the time value of money. • The firm has sufficient retained profits to pay the dividend and complete the buy back. • The firm plans to run a very tight ship, with no excess cash above operating requirements currently or over the next year. How much new equity financing will the company need? In other words, what is the value of new shares that will need to be issued? Which one of the following will have no effect on net income (NI) but decrease cash flow from assets (CFFA or FFCF) in this year for a tax-paying firm, all else remaining constant? Remember: $$NI=(Rev-COGS-FC-Depr-IntExp).(1-t_c )$$ $$CFFA=NI+Depr-CapEx - ΔNWC+IntExp$$ Read the following financial statements and calculate the firm's free cash flow over the 2014 financial year.  UBar Corp Income Statement for year ending 30th June 2014$m Sales 293 COGS 200 Rent expense 15 Gas expense 8 Depreciation 10 EBIT 60 Interest expense 0 Taxable income 60 Taxes 18 Net income 42
 UBar Corp Balance Sheet as at 30th June 2014 2013 $m$m Assets Cash 30 29 Accounts receivable 5 7 Pre-paid rent expense 1 0 Inventory 50 46 PPE 290 300 Total assets 376 382 Liabilities Trade payables 20 18 Accrued gas expense 3 2 Non-current liabilities 0 0 Contributed equity 212 212 Retained profits 136 150 Asset revaluation reserve 5 0 Total L and OE 376 382

Note: all figures are given in millions of dollars ($m). The firm's free cash flow over the 2014 financial year was: Find the cash flow from assets (CFFA) of the following project.  One Year Mining Project Data Project life 1 year Initial investment in building mine and equipment$9m Depreciation of mine and equipment over the year $8m Kilograms of gold mined at end of year 1,000 Sale price per kilogram$0.05m Variable cost per kilogram $0.03m Before-tax cost of closing mine at end of year$4m Tax rate 30%

Note 1: Due to the project, the firm also anticipates finding some rare diamonds which will give before-tax revenues of $1m at the end of the year. Note 2: The land that will be mined actually has thermal springs and a family of koalas that could be sold to an eco-tourist resort for an after-tax amount of$3m right now. However, if the mine goes ahead then this natural beauty will be destroyed.

Note 3: The mining equipment will have a book value of $1m at the end of the year for tax purposes. However, the equipment is expected to fetch$2.5m when it is sold.

Find the project's CFFA at time zero and one. Answers are given in millions of dollars ($m), with the first cash flow at time zero, and the second at time one. The investment decision primarily affects which part of a business? The working capital decision primarily affects which part of a business? Which firms tend to have high forward-looking price-earnings (PE) ratios? Two companies BigDiv and ZeroDiv are exactly the same except for their dividend payouts. BigDiv pays large dividends and ZeroDiv doesn't pay any dividends. Currently the two firms have the same earnings, assets, number of shares, share price, expected total return and risk. Assume a perfect world with no taxes, no transaction costs, no asymmetric information and that all assets including business projects are fairly priced and therefore zero-NPV. All things remaining equal, which of the following statements is NOT correct? What is the NPV of the following series of cash flows when the discount rate is 5% given as an effective annual rate? The first payment of$10 is in 4 years, followed by payments every 6 months forever after that which shrink by 2% every 6 months. That is, the growth rate every 6 months is actually negative 2%, given as an effective 6 month rate. So the payment at $t=4.5$ years will be $10(1-0.02)^1=9.80$, and so on.

Your friend just bought a house for $1,000,000. He financed it using a$900,000 mortgage loan and a deposit of $100,000. In the context of residential housing and mortgages, the 'equity' or 'net wealth' tied up in a house is the value of the house less the value of the mortgage loan. Assuming that your friend's only asset is his house, his net wealth is$100,000.

If house prices suddenly fall by 15%, what would be your friend's percentage change in net wealth?

Assume that:

• No income (rent) was received from the house during the short time over which house prices fell.
• Your friend will not declare bankruptcy, he will always pay off his debts.

One year ago you bought $100,000 of shares partly funded using a margin loan. The margin loan size was$70,000 and the other 30,000 was your own wealth or 'equity' in the share assets. The interest rate on the margin loan was 7.84% pa. Over the year, the shares produced a dividend yield of 4% pa and a capital gain of 5% pa. What was the total return on your wealth? Ignore taxes, assume that all cash flows (interest payments and dividends) were paid and received at the end of the year, and all rates above are effective annual rates. Hint: Remember that wealth in this context is your equity (E) in the house asset (V = D+E) which is funded by the loan (D) and your deposit or equity (E). Interest expense (IntExp) is an important part of a company's income statement (or 'profit and loss' or 'statement of financial performance'). How does an accountant calculate the annual interest expense of a fixed-coupon bond that has a liquid secondary market? Select the most correct answer: Annual interest expense is equal to: A manufacturing company is considering a new project in the more risky services industry. The cash flows from assets (CFFA) are estimated for the new project, with interest expense excluded from the calculations. To get the levered value of the project, what should these unlevered cash flows be discounted by? Assume that the manufacturing firm has a target debt-to-assets ratio that it sticks to. There are many ways to calculate a firm's free cash flow (FFCF), also called cash flow from assets (CFFA). Some include the annual interest tax shield in the cash flow and some do not. Which of the below FFCF formulas include the interest tax shield in the cash flow? $$(1) \quad FFCF=NI + Depr - CapEx -ΔNWC + IntExp$$ $$(2) \quad FFCF=NI + Depr - CapEx -ΔNWC + IntExp.(1-t_c)$$ $$(3) \quad FFCF=EBIT.(1-t_c )+ Depr- CapEx -ΔNWC+IntExp.t_c$$ $$(4) \quad FFCF=EBIT.(1-t_c) + Depr- CapEx -ΔNWC$$ $$(5) \quad FFCF=EBITDA.(1-t_c )+Depr.t_c- CapEx -ΔNWC+IntExp.t_c$$ $$(6) \quad FFCF=EBITDA.(1-t_c )+Depr.t_c- CapEx -ΔNWC$$ $$(7) \quad FFCF=EBIT-Tax + Depr - CapEx -ΔNWC$$ $$(8) \quad FFCF=EBIT-Tax + Depr - CapEx -ΔNWC-IntExp.t_c$$ $$(9) \quad FFCF=EBITDA-Tax - CapEx -ΔNWC$$ $$(10) \quad FFCF=EBITDA-Tax - CapEx -ΔNWC-IntExp.t_c$$ The formulas for net income (NI also called earnings), EBIT and EBITDA are given below. Assume that depreciation and amortisation are both represented by 'Depr' and that 'FC' represents fixed costs such as rent. $$NI=(Rev - COGS - Depr - FC - IntExp).(1-t_c )$$ $$EBIT=Rev - COGS - FC-Depr$$ $$EBITDA=Rev - COGS - FC$$ $$Tax =(Rev - COGS - Depr - FC - IntExp).t_c= \dfrac{NI.t_c}{1-t_c}$$ One method for calculating a firm's free cash flow (FFCF, or CFFA) is to ignore interest expense. That is, pretend that interest expense $(IntExp)$ is zero: \begin{aligned} FFCF &= (Rev - COGS - Depr - FC - IntExp)(1-t_c) + Depr - CapEx -\Delta NWC + IntExp \\ &= (Rev - COGS - Depr - FC - 0)(1-t_c) + Depr - CapEx -\Delta NWC - 0\\ \end{aligned} Does this annual FFCF with zero interest expense or the annual interest tax shield? Your friend claims that by reading 'The Economist' magazine's economic news articles, she can identify shares that will have positive abnormal expected returns over the next 2 years. Assuming that her claim is true, which statement(s) are correct? (i) Weak form market efficiency is broken. (ii) Semi-strong form market efficiency is broken. (iii) Strong form market efficiency is broken. (iv) The asset pricing model used to measure the abnormal returns (such as the CAPM) is either wrong (mis-specification error) or is measured using the wrong inputs (data errors) so the returns may not be abnormal but rather fair for the level of risk. Select the most correct response: A person is thinking about borrowing100 from the bank at 7% pa and investing it in shares with an expected return of 10% pa. One year later the person will sell the shares and pay back the loan in full. Both the loan and the shares are fairly priced.

What is the Net Present Value (NPV) of this one year investment? Note that you are asked to find the present value ($V_0$), not the value in one year ($V_1$).

Economic statistics released this morning were a surprise: they show a strong chance of consumer price inflation (CPI) reaching 5% pa over the next 2 years.

This is much higher than the previous forecast of 3% pa.

A vanilla fixed-coupon 2-year risk-free government bond was issued at par this morning, just before the economic news was released.

What is the expected change in bond price after the economic news this morning, and in the next 2 years? Assume that:

• Inflation remains at 5% over the next 2 years.
• Investors demand a constant real bond yield.
• The bond price falls by the (after-tax) value of the coupon the night before the ex-coupon date, as in real life.

A managed fund charges fees based on the amount of money that you keep with them. The fee is 2% of the start-of-year amount, but it is paid at the end of every year.

This fee is charged regardless of whether the fund makes gains or losses on your money.

The fund offers to invest your money in shares which have an expected return of 10% pa before fees.

You are thinking of investing $100,000 in the fund and keeping it there for 40 years when you plan to retire. What is the Net Present Value (NPV) of investing your money in the fund? Note that the question is not asking how much money you will have in 40 years, it is asking: what is the NPV of investing in the fund? Assume that: • The fund has no private information. • Markets are weak and semi-strong form efficient. • The fund's transaction costs are negligible. • The cost and trouble of investing your money in shares by yourself, without the managed fund, is negligible. A residential real estate investor believes that house prices will grow at a rate of 5% pa and that rents will grow by 2% pa forever. All rates are given as nominal effective annual returns. Assume that: • His forecast is true. • Real estate is and always will be fairly priced and the capital asset pricing model (CAPM) is true. • Ignore all costs such as taxes, agent fees, maintenance and so on. • All rental income cash flow is paid out to the owner, so there is no re-investment and therefore no additions or improvements made to the property. • The non-monetary benefits of owning real estate and renting remain constant. Which one of the following statements is NOT correct? Over time: Investors expect the Reserve Bank of Australia (RBA) to keep the policy rate steady at their next meeting. Then unexpectedly, the RBA announce that they will increase the policy rate by 25 basis points due to fears that the economy is growing too fast and that inflation will be above their target rate of 2 to 3 per cent. What do you expect to happen to Australia's exchange rate in the short term? The Australian dollar is likely to: The market expects the Reserve Bank of Australia (RBA) to increase the policy rate by 25 basis points at their next meeting. Then unexpectedly, the RBA announce that they will increase the policy rate by 50 basis points due to high future GDP and inflation forecasts. What do you expect to happen to Australia's exchange rate in the short term? The Australian dollar will: The Chinese government attempts to fix its exchange rate against the US dollar and at the same time use monetary policy to fix its interest rate at a set level. To be able to fix its exchange rate and interest rate in this way, what does the Chinese government actually do? 1. Adopts capital controls to prevent financial arbitrage by private firms and individuals. 2. Adopts the same interest rate (monetary policy) as the United States. 3. Fixes inflation so that the domestic real interest rate is equal to the United States' real interest rate. Which of the above statements is or are true? Currently, a mining company has a share price of$6 and pays constant annual dividends of $0.50. The next dividend will be paid in 1 year. Suddenly and unexpectedly the mining company announces that due to higher than expected profits, all of these windfall profits will be paid as a special dividend of$0.30 in 1 year.

If investors believe that the windfall profits and dividend is a one-off event, what will be the new share price? If investors believe that the additional dividend is actually permanent and will continue to be paid, what will be the new share price? Assume that the required return on equity is unchanged. Choose from the following, where the first share price includes the one-off increase in earnings and dividends for the first year only $(P_\text{0 one-off})$ , and the second assumes that the increase is permanent $(P_\text{0 permanent})$:

Note: When a firm makes excess profits they sometimes pay them out as special dividends. Special dividends are just like ordinary dividends but they are one-off and investors do not expect them to continue, unlike ordinary dividends which are expected to persist.

A stock has a beta of 1.5. The market's expected total return is 10% pa and the risk free rate is 5% pa, both given as effective annual rates.

In the last 5 minutes, bad economic news was released showing a higher chance of recession. Over this time the share market fell by 1%. The risk free rate was unchanged.

What do you think was the stock's historical return over the last 5 minutes, given as an effective 5 minute rate?

A stock has a beta of 1.5. The market's expected total return is 10% pa and the risk free rate is 5% pa, both given as effective annual rates.

Over the last year, bad economic news was released showing a higher chance of recession. Over this time the share market fell by 1%. So $r_{m} = (P_{0} - P_{-1})/P_{-1} = -0.01$, where the current time is zero and one year ago is time -1. The risk free rate was unchanged.

What do you think was the stock's historical return over the last year, given as an effective annual rate?

A firm changes its capital structure by issuing a large amount of equity and using the funds to repay debt. Its assets are unchanged. Ignore interest tax shields.

According to the Capital Asset Pricing Model (CAPM), which statement is correct?

What is the correlation of a variable X with a constant C?

The corr(X, C) or $\rho_{X,C}$ equals:

Let the standard deviation of returns for a share per month be $\sigma_\text{monthly}$.

What is the formula for the standard deviation of the share's returns per year $(\sigma_\text{yearly})$?

Assume that returns are independently and identically distributed (iid) so they have zero auto correlation, meaning that if the return was higher than average today, it does not indicate that the return tomorrow will be higher or lower than average.

A fast-growing firm is suitable for valuation using a multi-stage growth model.

It's nominal unlevered cash flow from assets ($CFFA_U$) at the end of this year (t=1) is expected to be $1 million. After that it is expected to grow at a rate of: • 12% pa for the next two years (from t=1 to 3), • 5% over the fourth year (from t=3 to 4), and • -1% forever after that (from t=4 onwards). Note that this is a negative one percent growth rate. Assume that: • The nominal WACC after tax is 9.5% pa and is not expected to change. • The nominal WACC before tax is 10% pa and is not expected to change. • The firm has a target debt-to-equity ratio that it plans to maintain. • The inflation rate is 3% pa. • All rates are given as nominal effective annual rates. What is the levered value of this fast growing firm's assets? An Australian company just issued two bonds: • A 6-month zero coupon bond at a yield of 6% pa, and • A 12 month zero coupon bond at a yield of 7% pa. What is the company's forward rate from 6 to 12 months? Give your answer as an APR compounding every 6 months, which is how the above bond yields are quoted. You're trying to save enough money to buy your first car which costs$2,500. You can save $100 at the end of each month starting from now. You currently have no money at all. You just opened a bank account with an interest rate of 6% pa payable monthly. How many months will it take to save enough money to buy the car? Assume that the price of the car will stay the same over time. Your main expense is fuel for your car which costs$100 per month. You just refueled, so you won't need any more fuel for another month (first payment at t=1 month).

You have \$2,500 in a bank account which pays interest at a rate of 6% pa, payable monthly. Interest rates are not expected to change.

Assuming that you have no income, in how many months time will you not have enough money to fully refuel your car?

You deposit cash into your bank account. Have you or debt?

Which of the following statements about Australian franking credits is NOT correct? Franking credits:

Which of the following statements about yield curves is NOT correct?