**Question 180** equivalent annual cash flow, inflation, real and nominal returns and cash flows

Details of two different types of light bulbs are given below:

- Low-energy light bulbs cost $3.50, have a life of nine years, and use about $1.60 of electricity a year, paid at the end of each year.
- Conventional light bulbs cost only $0.50, but last only about a year and use about $6.60 of energy a year, paid at the end of each year.

The real discount rate is 5%, given as an effective annual rate. Assume that all cash flows are real. The inflation rate is 3% given as an effective annual rate.

Find the Equivalent Annual Cost (EAC) of the low-energy and conventional light bulbs. The below choices are listed in that order.

An industrial chicken farmer grows chickens for their meat. Chickens:

- Cost $
**0.50**each to buy as chicks. They are bought on the day they’re born, at t=**0**. - Grow at a rate of $
**0.70**worth of meat per chicken per week for the first 6 weeks (t=**0**to t=**6**). - Grow at a rate of $
**0.40**worth of meat per chicken per week for the next 4 weeks (t=**6**to t=**10**) since they’re older and grow more slowly. - Feed costs are $
**0.30**per chicken per week for their whole life. Chicken feed is bought and fed to the chickens once per week at the beginning of the week. So the first amount of feed bought for a chicken at t=**0**costs $0.30, and so on. - Can be slaughtered (killed for their meat) and sold at no cost at the
**end**of the week. The price received for the chicken is their total value of meat (note that the chicken grows fast then slow, see above).

The required return of the chicken farm is **0.5%** given as an effective **weekly** rate.

Ignore taxes and the fixed costs of the factory. Ignore the chicken’s welfare and other environmental and ethical concerns.

Find the equivalent **weekly** cash flow of slaughtering a chicken at **6** weeks and at **10** weeks so the farmer can figure out the best time to slaughter his chickens. The choices below are given in the same order, 6 and 10 weeks.

You're advising your superstar client 40-cent who is weighing up buying a private jet or a luxury yacht. 40-cent is just as happy with either, but he wants to go with the more cost-effective option. These are the cash flows of the two options:

- The private jet can be bought for $6m now, which will cost $12,000 per month in fuel, piloting and airport costs, payable at the end of each month. The jet will last for
**12**years. - Or the luxury yacht can be bought for $4m now, which will cost $20,000 per month in fuel, crew and berthing costs, payable at the end of each month. The yacht will last for
**20**years.

What's unusual about 40-cent is that he is so famous that he will actually be able to sell his jet or yacht for the same price as it was bought since the next generation of superstar musicians will buy it from him as a status symbol.

Bank interest rates are 10% pa, given as an effective annual rate. You can assume that 40-cent will live for another 60 years and that when the jet or yacht's life is at an end, he will buy a new one with the same details as above.

Would you advise 40-cent to buy the or the ?

Note that the effective monthly rate is ##r_\text{eff monthly}=(1+0.1)^{1/12}-1=0.00797414##

**Question 249** equivalent annual cash flow, effective rate conversion

Details of two different types of desserts or edible treats are given below:

- High-sugar treats like candy, chocolate and ice cream make a person very happy. High sugar treats are cheap at only $2 per day.
- Low-sugar treats like nuts, cheese and fruit make a person equally happy if these foods are of high quality. Low sugar treats are more expensive at $4 per day.

The advantage of low-sugar treats is that a person only needs to pay the dentist $2,000 for fillings and root canal therapy once every 15 years. Whereas with high-sugar treats, that treatment needs to be done every 5 years.

The real discount rate is 10%, given as an effective annual rate. Assume that there are 365 days in every year and that all cash flows are real. The inflation rate is 3% given as an effective annual rate.

Find the equivalent annual cash flow (EAC) of the high-sugar treats and low-sugar treats, including dental costs. The below choices are listed in that order.

Ignore the pain of dental therapy, personal preferences and other factors.

**Question 56** income and capital returns, bond pricing, premium par and discount bonds

Which of the following statements about risk free government bonds is **NOT** correct?

**Hint:** Total return can be broken into income and capital returns as follows:

###\begin{aligned} r_\text{total} &= \frac{c_1}{p_0} + \frac{p_1-p_0}{p_0} \\ &= r_\text{income} + r_\text{capital} \end{aligned} ###

The capital return is the growth rate of the price.

The income return is the periodic cash flow. For a bond this is the coupon payment.

**Question 210** real estate, inflation, real and nominal returns and cash flows, income and capital returns

Assume that the Gordon Growth Model (same as the dividend discount model or perpetuity with growth formula) is an appropriate method to value real estate.

The rule of thumb in the real estate industry is that properties should yield a **5**% pa rental return. Many investors also regard property to be as risky as the stock market, therefore property is thought to have a required **total** return of **9**% pa which is the average total return on the stock market including dividends.

Assume that all returns are effective annual rates and they are **nominal** (not reduced by inflation). Inflation is expected to be **2**% pa.

You're considering purchasing an investment property which has a rental yield of 5% pa and you expect it to have the same risk as the stock market. Select the most correct statement about this property.

**Question 213** income and capital returns, bond pricing, premium par and discount bonds

The coupon rate of a fixed annual-coupon bond is constant (always the same).

What can you say about the income return (##r_\text{income}##) of a fixed annual coupon bond? Remember that:

###r_\text{total} = r_\text{income} + r_\text{capital}###

###r_\text{total, 0 to 1} = \frac{c_1}{p_0} + \frac{p_1-p_0}{p_0}###

Assume that there is no change in the bond's total annual yield to maturity from when it is issued to when it matures.

Select the most correct statement.

From its date of issue until maturity, the **income return** of a fixed annual coupon:

**Question 239** income and capital returns, inflation, real and nominal returns and cash flows, interest only loan

A bank grants a borrower an **interest-only** residential mortgage loan with a very large 50% deposit and a **nominal** interest rate of **6%** that is not expected to change. Assume that inflation is expected to be a **constant 2%** pa over the life of the loan. Ignore credit risk.

From the bank's point of view, what is the long term expected **nominal capital** return of the loan asset?

**Question 282** expected and historical returns, income and capital returns

You're the boss of an investment bank's equities research team. Your five analysts are each trying to find the **expected total return** over the next year of shares in a mining company. The mining firm:

- Is regarded as a mature company since it's quite stable in size and was floated around 30 years ago. It is not a high-growth company;
- Share price is very sensitive to changes in the price of the market portfolio, economic growth, the exchange rate and commodities prices. Due to this, its standard deviation of total returns is much higher than that of the market index;
- Experienced tough times in the last 10 years due to unexpected falls in commodity prices.
- Shares are traded in an active liquid market.

Assume that:

- The analysts' source data is correct and true, but their inferences might be wrong;
- All returns and yields are given as effective annual nominal rates.

**Question 415** income and capital returns, real estate, no explanation

You just bought a residential apartment as an investment property for $**500,000**.

You intend to rent it out to tenants. They are ready to move in, they would just like to know how much the monthly rental payments will be, then they will sign a twelve-month lease.

You require a total return of **8**% pa and a rental yield of **5**% pa.

What would the monthly paid-in-advance rental payments have to be this year to receive that 5% annual rental yield?

Also, if monthly rental payments can be increased each year when a new lease agreement is signed, by how much must you increase rents per year to realise the 8% pa total return on the property?

Ignore all taxes and the costs of renting such as maintenance costs, real estate agent fees, utilities and so on. Assume that there will be no periods of vacancy and that tenants will promptly pay the rental prices you charge.

Note that the first rental payment will be received at t=0. The first lease agreement specifies the first 12 equal payments from t=0 to 11. The next lease agreement can have a rental increase, so the next twelve equal payments from t=12 to 23 can be higher than previously, and so on forever.

**Question 497** income and capital returns, DDM, ex dividend date

A stock will pay you a dividend of $**10** **tonight** if you buy it **today**. Thereafter the annual dividend is expected to grow by **5**% pa, so the next dividend after the $10 one tonight will be $10.50 in one year, then in two years it will be $11.025 and so on. The stock's required return is **10**% pa.

What is the stock price today and what do you expect the stock price to be tomorrow, approximately?

**Question 49** inflation, real and nominal returns and cash flows, APR, effective rate

In Australia, nominal yields on **semi**-annual coupon paying Government Bonds with 2 years until maturity are currently **2.83**% pa.

The inflation rate is currently **2.2**% pa, given as an APR compounding per **quarter**. The inflation rate is not expected to change over the next 2 years.

What is the real yield on these bonds, given as an APR compounding every 6 months?

**Question 58** NPV, inflation, real and nominal returns and cash flows, Annuity

A project to build a toll bridge will take two years to complete, costing three payments of $100 million at the start of each year for the next three years, that is at t=0, 1 and 2.

After completion, the toll bridge will yield a constant $50 million at the end of each year for the next 10 years. So the first payment will be at t=3 and the last at t=12. After the last payment at t=12, the bridge will be given to the government.

The required return of the project is 21% pa given as an effective annual **nominal** rate.

All cash flows are **real** and the expected inflation rate is 10% pa given as an effective annual rate. Ignore taxes.

The Net Present Value is:

A highly leveraged risky firm is trying to raise more debt. The types of debt being considered, in no particular order, are senior bonds, junior bonds, bank accepted bills, promissory notes and bank loans.

Which of these forms of debt is the safest from the perspective of the debt investors who are thinking of investing in the firm's new debt?

**Question 22** NPV, perpetuity with growth, effective rate, effective rate conversion

What is the NPV of the following series of cash flows when the discount rate is 10% given as an effective annual rate?

The first payment of $90 is in 3 years, followed by payments every 6 months in perpetuity after that which shrink by 3% every 6 months. That is, the growth rate every 6 months is actually negative 3%, given as an effective 6 month rate. So the payment at ## t=3.5 ## years will be ## 90(1-0.03)^1=87.3 ##, and so on.

The phone company Telstra have 2 mobile service plans on offer which both have the same amount of phone call, text message and internet data credit. Both plans have a contract length of 24 months and the monthly cost is payable in advance. The only difference between the two plans is that one is a:

- 'Bring Your Own' (BYO) mobile service plan, costing $50 per month. There is no phone included in this plan. The other plan is a:
- 'Bundled' mobile service plan that comes with the latest smart phone, costing $71 per month. This plan includes the latest smart phone.

Neither plan has any additional payments at the start or end.

The only difference between the plans is the phone, so what is the implied cost of the phone as a present value?

Assume that the discount rate is 2% per month given as an effective monthly rate, the same high interest rate on credit cards.

**Question 48** IRR, NPV, bond pricing, premium par and discount bonds, market efficiency

The theory of fixed interest bond pricing is an application of the theory of Net Present Value (NPV). Also, a 'fairly priced' asset is not over- or under-priced. Buying or selling a fairly priced asset has an NPV of zero.

Considering this, which of the following statements is **NOT** correct?

In Australia, domestic university students are allowed to buy concession tickets for the bus, train and ferry which sell at a discount of **50**% to full-price tickets.

The Australian Government do not allow international university students to buy concession tickets, they have to pay the full price.

Some international students see this as unfair and they are willing to pay for fake university identification cards which have the concession sticker.

What is the most that an international student would be willing to pay for a fake identification card?

Assume that international students:

- consider buying their fake card on the morning of the first day of university from their neighbour, just before they leave to take the train into university.
- buy their weekly train tickets on the morning of the first day of each week.
- ride the train to university and back home again every day seven days per week until summer holidays
**40**weeks from now. The concession card only lasts for those 40 weeks. Assume that there are**52**weeks in the year for the purpose of interest rate conversion. - a single full-priced one-way train ride costs $
**5**. - have a discount rate of
**11**% pa, given as an effective annual rate.

Approach this question from a purely financial view point, ignoring the illegality, embarrassment and the morality of committing fraud.

A person is thinking about borrowing $100 from the bank at 7% pa and investing it in shares with an expected return of 10% pa. One year later the person will sell the shares and pay back the loan in full. Both the loan and the shares are fairly priced.

What is the Net Present Value (NPV) of this one year investment? Note that you are asked to find the present value (##V_0##), not the value in one year (##V_1##).

Harvey Norman the large retailer often runs sales advertising 2 years **interest free** when you purchase its products. This offer can be seen as a free personal loan from Harvey Norman to its customers.

Assume that banks charge an interest rate on personal loans of 12% pa given as an APR compounding per month. This is the interest rate that Harvey Norman deserves on the 2 year loan it extends to its customers. Therefore Harvey Norman must implicitly include the cost of this loan in the advertised sale price of its goods.

If you were a customer buying from Harvey Norman, and you were paying immediately, not in 2 years, what is the minimum percentage discount to the advertised sale price that you would insist on? (Hint: if it makes it easier, assume that you’re buying a product with an advertised price of $100).

A stock is expected to pay the following dividends:

Cash Flows of a Stock | ||||||

Time (yrs) | 0 | 1 | 2 | 3 | 4 | ... |

Dividend ($) | 0 | 6 | 12 | 18 | 20 | ... |

After year 4, the dividend will grow in perpetuity at 5% pa. The required return of the stock is 10% pa. Both the growth rate and required return are given as effective annual rates.

What will be the price of the stock in 7 years (t = 7), just after the dividend at that time has been paid?

A very low-risk stock just paid its semi-annual dividend of $0.14, as it has for the last 5 years. You conservatively estimate that from now on the dividend will fall at a rate of 1% every 6 months.

If the stock currently sells for $3 per share, what must be its required total return as an effective annual rate?

If risk free government bonds are trading at a yield of 4% pa, given as an effective annual rate, would you consider buying or selling the stock?

The stock's required total return is:

You just started work at your new job which pays $48,000 per year.

The human resources department have given you the option of being paid at the end of every week or every month.

Assume that there are 4 weeks per month, 12 months per year and 48 weeks per year.

Bank interest rates are 12% pa given as an APR compounding per month.

What is the dollar gain over one year, as a net present value, of being paid every week rather than every month?

Your friend overheard that you need some cash and asks if you would like to borrow some money. She can lend you $**5,000** now (t=0), and in return she wants you to pay her back $1,000 in two years (t=2) and every year after that for the next 5 years, so there will be **6** payments of $**1,000** from t=**2** to t=**7** inclusive.

What is the net present value (NPV) of borrowing from your friend?

Assume that banks loan funds at interest rates of **10**% pa, given as an effective annual rate.

A managed fund charges fees based on the amount of money that you keep with them. The fee is **2**% of the **end**-of-year amount, paid at the **end** of every year.

This fee is charged regardless of whether the fund makes gains or losses on your money.

The fund offers to invest your money in shares which have an expected return of **10%** pa before fees.

You are thinking of investing $**100,000** in the fund and keeping it there for **40** years when you plan to retire.

How much money do you expect to have in the fund in 40 years? Also, what is the future value of the fees that the fund expects to earn from you? Give both amounts as future values in 40 years. Assume that:

- The fund has no private information.
- Markets are weak and semi-strong form efficient.
- The fund's transaction costs are negligible.
- The cost and trouble of investing your money in shares by yourself, without the managed fund, is negligible.
- The fund invests its fees in the same companies as it invests your funds in, but with no fees.

The below answer choices list your expected wealth in 40 years and then the fund's expected wealth in 40 years.

The boss of WorkingForTheManCorp has a wicked (and unethical) idea. He plans to pay his poor workers one week late so that he can get more interest on his cash in the bank.

Every week he is supposed to pay his 1,000 employees $1,000 each. So $**1** million is paid to employees every week.

The boss was just about to pay his employees today, until he thought of this idea so he will actually pay them one week (**7** days) later for the work they did last week and every week in the future, forever.

Bank interest rates are **10**% pa, given as a real effective annual rate. So ##r_\text{eff annual, real} = 0.1## and the real effective weekly rate is therefore ##r_\text{eff weekly, real} = (1+0.1)^{1/52}-1 = 0.001834569##

All rates and cash flows are real, the inflation rate is **3**% pa and there are **52** weeks per year. The boss will always pay wages one week late. The business will operate forever with constant real wages and the same number of employees.

What is the net present value (**NPV**) of the boss's decision to pay later?

A young lady is trying to decide if she should attend university or not.

The young lady's parents say that she must attend university because otherwise all of her hard work studying and attending school during her childhood was a waste.

What's the correct way to classify this item from a capital budgeting perspective when trying to decide whether to attend university?

The hard work studying at school in her childhood should be classified as:

What is the net present value (NPV) of undertaking a full-time Australian undergraduate business degree as an Australian citizen? Only include the cash flows over the duration of the degree, ignore any benefits or costs of the degree after it's completed.

Assume the following:

- The degree takes
**3**years to complete and all students pass all subjects. - There are
**2**semesters per year and**4**subjects per semester. - University fees per subject per semester are
**$1,277**, paid at the**start**of each semester. Fees are expected to stay constant for the next 3 years. - There are
**52**weeks per year. - The first semester is just about to start (t=0). The first semester lasts for 19 weeks (t=
**0**to**19**). - The second semester starts immediately afterwards (t=19) and lasts for another 19 weeks (t=
**19**to**38**). - The summer holidays begin after the second semester ends and last for
**14**weeks (t=**38**to**52**). Then the first semester begins the next year, and so on. - Working full time at the grocery store instead of studying full-time pays
**$20**/hr and you can work**35**hours per week. Wages are paid at the**end**of each week. - Full-time students can work full-time during the summer holiday at the grocery store for the same rate of $20/hr for 35 hours per week. Wages are paid at the end of each week.
- The discount rate is
**9.8%**pa. All rates and cash flows are real. Inflation is expected to be**3%**pa. All rates are effective annual.

The NPV of costs from undertaking the university degree is:

Over the next year, the management of an unlevered company plans to:

- Achieve firm free cash flow (FFCF or CFFA) of $1m.
- Pay dividends of $1.8m
- Complete a $1.3m share buy-back.
- Spend $0.8m on new buildings without buying or selling any other fixed assets. This capital expenditure is included in the CFFA figure quoted above.

Assume that:

- All amounts are received and paid at the end of the year so you can ignore the time value of money.
- The firm has sufficient retained profits to pay the dividend and complete the buy back.
- The firm plans to run a very tight ship, with no excess cash above operating requirements currently or over the next year.

How much new equity financing will the company need? In other words, what is the value of new shares that will need to be issued?

Over the next year, the management of an **unlevered** company plans to:

- Make $
**5**m in sales, $**1.9m**in net income and $**2**m in equity free cash flow (EFCF). - Pay dividends of $
**1**m. - Complete a $
**1.3**m share buy-back.

Assume that:

- All amounts are received and paid at the end of the year so you can ignore the time value of money.
- The firm has sufficient retained profits to legally pay the dividend and complete the buy back.
- The firm plans to run a very tight ship, with no excess cash above operating requirements currently or over the next year.

How much new equity financing will the company need? In other words, what is the value of new shares that will need to be issued?

**Question 545** income and capital returns, fully amortising loan, no explanation

Which of the following statements about the capital and income returns of a **25 year** **fully amortising** loan asset is correct?

Assume that the yield curve (which shows total returns over different maturities) is flat and is not expected to change.

Over the 25 years from issuance to maturity, a fully amortising loan's expected **annual** effective:

You just entered into a fully amortising home loan with a principal of $**600,000**, a variable interest rate of **4.25**% pa and a term of **25** years.

Immediately after settling the loan, the variable interest rate suddenly falls to **4**% pa! You can't believe your luck. Despite this, you plan to continue paying the same home loan payments as you did before. How long will it now take to pay off your home loan?

Assume that the lower interest rate was granted immediately and that rates were and are now again expected to remain constant. Round your answer up to the nearest whole month.

**Question 546** income and capital returns, interest only loan, no explanation

Which of the following statements about the capital and income returns of an **interest-only** loan is correct?

Assume that the yield curve (which shows total returns over different maturities) is flat and is not expected to change.

An interest-only loan's expected:

In Australia in the 1980's, inflation was around 8% pa, and residential mortgage loan interest rates were around 14%.

In 2013, inflation was around 2.5% pa, and residential mortgage loan interest rates were around 4.5%.

If a person can afford constant mortgage loan payments of $**2,000** per month, how much more can they borrow when interest rates are **4.5**% pa compared with **14.0**% pa?

Give your answer as a proportional increase over the amount you could borrow when interest rates were high ##(V_\text{high rates})##, so:

###\text{Proportional increase} = \dfrac{V_\text{low rates}-V_\text{high rates}}{V_\text{high rates}} ###

Assume that:

- Interest rates are expected to be constant over the life of the loan.
- Loans are
**interest-only**and have a life of**30**years. - Mortgage loan payments are made every month in arrears and all interest rates are given as annualised percentage rates (
**APR**'s) compounding per**month**.

For a price of $100, Carol will sell you a 5 year bond paying semi-annual coupons of 16% pa. The face value of the bond is $100. Other bonds with similar risk, maturity and coupon characteristics trade at a yield of 12% pa.

For a price of $100, Rad will sell you a 5 year bond paying semi-annual coupons of 16% pa. The face value of the bond is $100. Other bonds with the same risk, maturity and coupon characteristics trade at a yield of 6% pa.

**Question 25** bond pricing, zero coupon bond, term structure of interest rates, forward interest rate

A European company just issued two bonds, a

- 2 year zero coupon bond at a yield of 8% pa, and a
- 3 year zero coupon bond at a yield of 10% pa.

What is the company's forward rate over the third year (from t=2 to t=3)? Give your answer as an effective annual rate, which is how the above bond yields are quoted.

**Question 96** bond pricing, zero coupon bond, term structure of interest rates, forward interest rate

An Australian company just issued two bonds:

- A 1 year zero coupon bond at a yield of 8% pa, and
- A 2 year zero coupon bond at a yield of 10% pa.

What is the forward rate on the company's debt from years 1 to 2? Give your answer as an APR compounding every **6** months, which is how the above bond yields are quoted.

Bonds A and B are issued by the same Australian company. Both bonds yield 7% pa, and they have the same face value ($100), maturity, seniority, and payment frequency.

The only difference is that bond A pays coupons of 10% pa and bond B pays coupons of 5% pa. Which of the following statements is true about the bonds' prices?

**Question 572** bond pricing, zero coupon bond, term structure of interest rates, expectations hypothesis, forward interest rate, yield curve

In the below term structure of interest rates equation, all rates are effective annual yields and the numbers in subscript represent the years that the yields are measured over:

###(1+r_{0-3})^3 = (1+r_{0-1})(1+r_{1-2})(1+r_{2-3}) ###

Which of the following statements is **NOT** correct?

**Question 573** bond pricing, zero coupon bond, term structure of interest rates, expectations hypothesis, liquidity premium theory, forward interest rate, yield curve

In the below term structure of interest rates equation, all rates are effective annual yields and the numbers in subscript represent the years that the yields are measured over:

###(1+r_{0-3})^3 = (1+r_{0-1})(1+r_{1-2})(1+r_{2-3}) ###

Which of the following statements is **NOT** correct?

A young lady is trying to decide if she should attend university. Her friends say that she should go to university because she is more likely to meet a clever young man than if she begins full time work straight away.

What's the correct way to classify this item from a capital budgeting perspective when trying to find the Net Present Value of going to university rather than working?

The opportunity to meet a desirable future spouse should be classified as:

A man has taken a day off from his casual painting job to relax.

It's the end of the day and he's thinking about the hours that he could have spent working (in the past) which are now:

A managed fund charges fees based on the amount of money that you keep with them. The fee is **2**% of the **start**-of-year amount, but it is paid at the **end** of every year.

This fee is charged regardless of whether the fund makes gains or losses on your money.

The fund offers to invest your money in shares which have an expected return of **10**% pa before fees.

You are thinking of investing $**100,000** in the fund and keeping it there for **40** years when you plan to retire.

What is the Net Present Value (NPV) of investing your money in the fund? Note that the question is **not** asking how much money you will have in 40 years, it is asking: what is the **NPV** of investing in the fund? Assume that:

- The fund has no private information.
- Markets are weak and semi-strong form efficient.
- The fund's transaction costs are negligible.
- The cost and trouble of investing your money in shares by yourself, without the managed fund, is negligible.

Your friend is trying to find the net present value of a project. The project is expected to last for just one year with:

- a negative cash flow of
**-**$**1**million initially (t=0), and - a positive cash flow of $
**1.1**million in one year (t=1).

The project has a total required return of 10% pa due to its moderate level of undiversifiable risk.

Your friend is aware of the importance of opportunity costs and the time value of money, but he is unsure of how to find the NPV of the project.

He knows that the opportunity cost of investing the $1m in the project is the expected gain from investing the money in shares instead. Like the project, shares also have an expected return of 10% since they have moderate undiversifiable risk. This opportunity cost is $0.1m ##(=1m \times 10\%)## which occurs in one year (t=1).

He knows that the time value of money should be accounted for, and this can be done by finding the present value of the cash flows in one year.

Your friend has listed a few different ways to find the NPV which are written down below.

(I) ##-1m + \dfrac{1.1m}{(1+0.1)^1} ##

(II) ##-1m + \dfrac{1.1m}{(1+0.1)^1} - \dfrac{1m}{(1+0.1)^1} \times 0.1 ##

(III) ##-1m + \dfrac{1.1m}{(1+0.1)^1} - \dfrac{1.1m}{(1+0.1)^1} \times 0.1 ##

(IV) ##-1m + 1.1m - \dfrac{1.1m}{(1+0.1)^1} \times 0.1 ##

(V) ##-1m + 1.1m - 1.1m \times 0.1 ##

Which of the above calculations give the correct NPV? Select the most correct answer.

Find Candys Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

Candys Corp | ||

Income Statement for | ||

year ending 30th June 2013 | ||

$m | ||

Sales | 200 | |

COGS | 50 | |

Operating expense | 10 | |

Depreciation | 20 | |

Interest expense | 10 | |

Income before tax | 110 | |

Tax at 30% | 33 | |

Net income | 77 | |

Candys Corp | ||

Balance Sheet | ||

as at 30th June | 2013 | 2012 |

$m | $m | |

Assets | ||

Current assets | 220 | 180 |

PPE | ||

Cost | 300 | 340 |

Accumul. depr. | 60 | 40 |

Carrying amount | 240 | 300 |

Total assets | 460 | 480 |

Liabilities | ||

Current liabilities | 175 | 190 |

Non-current liabilities | 135 | 130 |

Owners' equity | ||

Retained earnings | 50 | 60 |

Contributed equity | 100 | 100 |

Total L and OE | 460 | 480 |

Note: all figures are given in millions of dollars ($m).

For a price of $102, Andrea will sell you a share which just paid a dividend of $10 yesterday, and is expected to pay dividends every year forever, growing at a rate of 5% pa.

So the next dividend will be ##10(1+0.05)^1=$10.50## in one year from now, and the year after it will be ##10(1+0.05)^2=11.025## and so on.

The required return of the stock is 15% pa.

Currently, a mining company has a share price of $6 and pays constant annual dividends of $0.50. The next dividend will be paid in 1 year. Suddenly and unexpectedly the mining company announces that due to higher than expected profits, all of these windfall profits will be paid as a special dividend of $0.30 in 1 year.

If investors believe that the windfall profits and dividend is a one-off event, what will be the new share price? If investors believe that the additional dividend is actually permanent and will continue to be paid, what will be the new share price? Assume that the required return on equity is unchanged. Choose from the following, where the first share price includes the one-off increase in earnings and dividends for the first year only ##(P_\text{0 one-off})## , and the second assumes that the increase is permanent ##(P_\text{0 permanent})##:

Note: When a firm makes excess profits they sometimes pay them out as special dividends. Special dividends are just like ordinary dividends but they are one-off and investors do not expect them to continue, unlike ordinary dividends which are expected to persist.

You own an apartment which you rent out as an investment property.

What is the price of the apartment using discounted cash flow (DCF, same as NPV) valuation?

Assume that:

- You just signed a contract to rent the apartment out to a tenant for the next 12 months at $2,000 per month, payable in advance (at the start of the month, t=0). The tenant is just about to pay you the first $2,000 payment.
- The contract states that monthly rental payments are fixed for 12 months. After the contract ends, you plan to sign another contract but with rental payment increases of 3%. You intend to do this every year.

So rental payments will increase at the start of the 13th month (t=12) to be $2,060 (=2,000(1+0.03)), and then they will be constant for the next 12 months.

Rental payments will increase again at the start of the 25th month (t=24) to be $2,121.80 (=2,000(1+0.03)^{2}), and then they will be constant for the next 12 months until the next year, and so on. - The required return of the apartment is 8.732% pa, given as an effective annual rate.
- Ignore all taxes, maintenance, real estate agent, council and strata fees, periods of vacancy and other costs. Assume that the apartment will last forever and so will the rental payments.

Stocks in the United States usually pay **quarterly** dividends. For example, the retailer Wal-Mart Stores paid a $0.47 dividend every quarter over the 2013 calendar year and plans to pay a $0.48 dividend every quarter over the 2014 calendar year.

Using the dividend discount model and net present value techniques, calculate the stock price of Wal-Mart Stores assuming that:

- The time now is the beginning of January 2014. The next dividend of $
**0.48**will be received in**3**months (end of March 2014), with another 3 quarterly payments of $0.48 after this (end of June, September and December 2014). - The quarterly dividend will increase by
**2**% every year, but each quarterly dividend over the year will be equal. So each quarterly dividend paid in 2015 will be $0.4896 (##=0.48×(1+0.02)^1##), with the first at the end of March 2015 and the last at the end of December 2015. In 2016 each quarterly dividend will be $0.499392 (##=0.48×(1+0.02)^2##), with the first at the end of March 2016 and the last at the end of December 2016, and so on**forever**. - The total required return on equity is
**6**% pa. - The required return and growth rate are given as effective annual rates.
- All cash flows and rates are
**nominal**. Inflation is**3**% pa. - Dividend payment dates and ex-dividend dates are at the same time.
- Remember that there are 4 quarters in a year and 3 months in a quarter.

What is the current stock price?

A company advertises an investment costing $**1,000** which they say is underpriced. They say that it has an expected total return of **15**% pa, but a required return of only **10**% pa. Assume that there are no dividend payments so the entire 15% total return is all capital return.

Assuming that the company's statements are correct, what is the **NPV** of buying the investment if the 15% return lasts for the next **100** years (t=0 to 100), then reverts to 10% pa after that time? Also, what is the NPV of the investment if the 15% return lasts forever?

In both cases, assume that the required return of 10% remains constant. All returns are given as effective annual rates.

The answer choices below are given in the same order (15% for 100 years, and 15% forever):

Discounted cash flow (DCF) valuation prices assets by finding the present value of the asset's future cash flows. The single cash flow, annuity, and perpetuity equations are very useful for this.

Which of the following equations is the 'perpetuity with growth' equation?

What type of present value equation is best suited to value a residential house investment property that is expected to pay **constant** rental payments **forever**? Note that 'constant' has the same meaning as 'level' in this context.

A stock is **just about to pay** a dividend of $1 **tonight**. Future annual dividends are expected to grow by 2% pa. The next dividend of $1 will be paid tonight, and the year after that the dividend will be $1.02 (=1*(1+0.02)^1), and a year later 1.0404 (=1*(1+0.04)^2) and so on forever.

Its required total return is 10% pa. The total required return and growth rate of dividends are given as effective annual rates.

Calculate the current stock price.

**Question 339** bond pricing, inflation, market efficiency, income and capital returns

Economic statistics released this morning were a surprise: they show a strong chance of consumer price inflation (CPI) reaching 5% pa over the next 2 years.

This is much higher than the previous forecast of 3% pa.

A vanilla fixed-coupon 2-year risk-free government bond was issued at **par** this morning, just **before** the economic news was released.

What is the expected change in bond price after the economic news this morning, and in the next 2 years? Assume that:

- Inflation remains at 5% over the next 2 years.
- Investors demand a constant real bond yield.
- The bond price falls by the (after-tax) value of the coupon the night before the ex-coupon date, as in real life.

A firm wishes to raise $10 million now. They will issue 6% pa semi-annual coupon bonds that will mature in 3 years and have a face value of $100 each. Bond yields are 5% pa, given as an APR compounding every 6 months, and the yield curve is flat.

How many bonds should the firm issue?

An investor bought a **10** year **2.5**% pa fixed coupon government bond priced at **par**. The face value is $**100**. Coupons are paid **semi-annually** and the next one is in 6 months.

**Six months later**, just **after** the coupon at that time was paid, yields suddenly and unexpectedly fell to **2**% pa. Note that all yields above are given as APR's compounding semi-annually.

What was the bond investors' historical total return over that first 6 month period, given as an effective semi-annual rate?

Which of the following statements about book and market equity is **NOT** correct?

You own some nice shoes which you use once per week on date nights. You bought them **2** years ago for $**500**. In your experience, shoes used once per week last for **6** years. So you expect yours to last for another **4** years.

Your younger sister said that she wants to borrow your shoes once per week. With the increased use, your shoes will only last for another **2** years rather than 4.

What is the present value of the cost of letting your sister use your current shoes for the next 2 years?

Assume: that bank interest rates are **10**% pa, given as an effective annual rate; you will buy a new pair of shoes when your current pair wears out and your sister will not use the new ones; your sister will only use your current shoes so she will only use it for the next 2 years; and the price of new shoes never changes.

You own a nice suit which you wear once per week on nights out. You bought it one year ago for $600. In your experience, suits used once per week last for 6 years. So you expect yours to last for another 5 years.

Your younger brother said that retro is back in style so he wants to wants to borrow your suit once a week when he goes out. With the increased use, your suit will only last for another 4 years rather than 5.

What is the present value of the cost of letting your brother use your current suit for the next 4 years?

Assume: that bank interest rates are 10% pa, given as an effective annual rate; you will buy a new suit when your current one wears out and your brother will not use the new one; your brother will only use your current suit so he will only use it for the next four years; and the price of a new suit never changes.

You just bought a nice dress which you plan to wear once per month on nights out. You bought it a moment ago for $600 (at t=0). In your experience, dresses used once per month last for 6 years.

Your younger sister is a student with no money and wants to borrow your dress once a month when she hits the town. With the increased use, your dress will only last for another 3 years rather than 6.

What is the present value of the cost of letting your sister use your current dress for the next 3 years?

Assume: that bank interest rates are 10% pa, given as an effective annual rate; you will buy a new dress when your current one wears out; your sister will only use the current dress, not the next one that you will buy; and the price of a new dress never changes.

Which of the following investable assets are **NOT** suitable for valuation using PE multiples techniques?

Which firms tend to have **high** forward-looking price-earnings (PE) ratios?

Which of the following investable assets are **NOT** suitable for valuation using PE multiples techniques?

**Question 446** working capital decision, corporate financial decision theory

The working capital decision primarily affects which part of a business?

**Question 447** payout policy, corporate financial decision theory

Payout policy is most closely related to which part of a business?

The expression 'cash is king' emphasizes the importance of having enough cash to pay your short term debts to avoid bankruptcy. Which business decision is this expression most closely related to?

One year ago you bought $**100,000** of shares partly funded using a margin loan. The margin loan size was $**70,000** and the other $**30,000** was your own wealth or 'equity' in the share assets.

The interest rate on the margin loan was **7.84**% pa.

Over the year, the shares produced a dividend yield of **4**% pa and a capital gain of **5**% pa.

What was the **total** return on your **wealth**? Ignore taxes, assume that all cash flows (interest payments and dividends) were paid and received at the end of the year, and all rates above are effective annual rates.

Hint: Remember that wealth in this context is your equity (E) in the house asset (V = D+E) which is funded by the loan (D) and your deposit or equity (E).

Interest expense (IntExp) is an important part of a company's income statement (or 'profit and loss' or 'statement of financial performance').

How does an **accountant** calculate the annual interest expense of a fixed-coupon bond that has a liquid secondary market? Select the most correct answer:

Annual interest expense is equal to:

The US firm Google operates in the online advertising business. In 2011 Google bought Motorola Mobility which manufactures mobile phones.

Assume the following:

- Google had a 10% after-tax weighted average cost of capital (WACC) before it bought Motorola.
- Motorola had a 20% after-tax WACC before it merged with Google.
- Google and Motorola have the same level of gearing.
- Both companies operate in a classical tax system.

You are a manager at Motorola. You must value a project for making mobile phones. Which method(s) will give the correct valuation of the mobile phone manufacturing project? Select the most correct answer.

The mobile phone manufacturing project's:

**Question 370** capital budgeting, NPV, interest tax shield, WACC, CFFA

Project Data | ||

Project life | 2 yrs | |

Initial investment in equipment | $600k | |

Depreciation of equipment per year | $250k | |

Expected sale price of equipment at end of project | $200k | |

Revenue per job | $12k | |

Variable cost per job | $4k | |

Quantity of jobs per year | 120 | |

Fixed costs per year, paid at the end of each year | $100k | |

Interest expense in first year (at t=1) | $16.091k | |

Interest expense in second year (at t=2) | $9.711k | |

Tax rate | 30% | |

Government treasury bond yield | 5% | |

Bank loan debt yield | 6% | |

Levered cost of equity | 12.5% | |

Market portfolio return | 10% | |

Beta of assets | 1.24 | |

Beta of levered equity | 1.5 | |

Firm's and project's debt-to-equity ratio |
25% | |

**Notes**

- The project will require an immediate purchase of $
**50**k of inventory, which will all be sold at cost when the project ends. Current liabilities are negligible so they can be ignored.

**Assumptions**

- The debt-to-equity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio. Note that interest expense is different in each year.
- Thousands are represented by 'k' (kilo).
- All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
- All rates and cash flows are nominal. The inflation rate is 2% pa.
- All rates are given as effective annual rates.
- The 50% capital gains tax discount is not available since the project is undertaken by a firm, not an individual.

What is the net present value (NPV) of the project?

A company issues a large amount of bonds to raise money for new projects of similar risk to the company's existing projects. The net present value (NPV) of the new projects is positive but small. Assume a classical tax system. Which statement is **NOT** correct?

**Question 337** capital structure, interest tax shield, leverage, real and nominal returns and cash flows, multi stage growth model

A fast-growing firm is suitable for valuation using a multi-stage growth model.

It's **nominal** unlevered cash flow from assets (##CFFA_U##) at the end of this year (**t=1**) is expected to be $**1** million. After that it is expected to grow at a rate of:

**12**% pa for the next two years (from t=1 to 3),**5**% over the fourth year (from t=3 to 4), and**-1**% forever after that (from t=4 onwards). Note that this is a negative one percent growth rate.

Assume that:

- The nominal WACC
**after**tax is**9.5**% pa and is not expected to change. - The nominal WACC
**before**tax is**10**% pa and is not expected to change. - The firm has a target debt-to-
**equity**ratio that it plans to maintain. - The inflation rate is
**3**% pa. - All rates are given as
**nominal**effective annual rates.

What is the levered value of this fast growing firm's assets?

**Question 418** capital budgeting, NPV, interest tax shield, WACC, CFFA, CAPM

Project Data | ||

Project life | 1 year | |

Initial investment in equipment | $8m | |

Depreciation of equipment per year | $8m | |

Expected sale price of equipment at end of project | 0 | |

Unit sales per year | 4m | |

Sale price per unit | $10 | |

Variable cost per unit | $5 | |

Fixed costs per year, paid at the end of each year | $2m | |

Interest expense in first year (at t=1) | $0.562m | |

Corporate tax rate | 30% | |

Government treasury bond yield | 5% | |

Bank loan debt yield | 9% | |

Market portfolio return | 10% | |

Covariance of levered equity returns with market | 0.32 | |

Variance of market portfolio returns | 0.16 | |

Firm's and project's debt-to-equity ratio |
50% | |

**Notes**

- Due to the project, current assets will increase by $
**6**m now (t=0) and fall by $**6**m at the end (t=1). Current liabilities will not be affected.

**Assumptions**

- The debt-to-equity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio.
- Millions are represented by 'm'.
- All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
- All rates and cash flows are real. The inflation rate is 2% pa. All rates are given as effective annual rates.
- The project is undertaken by a firm, not an individual.

What is the net present value (NPV) of the project?

**Question 397** financial distress, leverage, capital structure, NPV

A levered firm has a market value of assets of $**10**m. Its debt is all comprised of zero-coupon bonds which mature in one year and have a combined face value of $**9.9**m.

Investors are risk-neutral and therefore all debt and equity holders demand the same required return of **10**% pa.

Therefore the current market capitalisation of debt ##(D_0)## is $**9**m and equity ##(E_0)## is $**1**m.

A new project presents itself which requires an investment of $**2**m and will provide a:

- $
**6.6**m cash flow with probability 0.5 in the good state of the world, and a **-**$**4.4**m (notice the negative sign) cash flow with probability 0.5 in the bad state of the world.

The project can be funded using the company's excess cash, no debt or equity raisings are required.

What would be the new market capitalisation of equity ##(E_\text{0, with project})## if shareholders vote to proceed with the project, and therefore should shareholders proceed with the project?

A method commonly seen in textbooks for calculating a levered firm's free cash flow (FFCF, or CFFA) is the following:

###\begin{aligned} FFCF &= (Rev - COGS - Depr - FC - IntExp)(1-t_c) + \\ &\space\space\space+ Depr - CapEx -\Delta NWC + IntExp(1-t_c) \\ \end{aligned}###

Find Scubar Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

Scubar Corp | ||

Income Statement for | ||

year ending 30th June 2013 | ||

$m | ||

Sales | 200 | |

COGS | 60 | |

Depreciation | 20 | |

Rent expense | 11 | |

Interest expense | 19 | |

Taxable Income | 90 | |

Taxes at 30% | 27 | |

Net income | 63 | |

Scubar Corp | ||

Balance Sheet | ||

as at 30th June | 2013 | 2012 |

$m | $m | |

Inventory | 60 | 50 |

Trade debtors | 19 | 6 |

Rent paid in advance | 3 | 2 |

PPE | 420 | 400 |

Total assets | 502 | 458 |

Trade creditors | 10 | 8 |

Bond liabilities | 200 | 190 |

Contributed equity | 130 | 130 |

Retained profits | 162 | 130 |

Total L and OE | 502 | 458 |

Note: All figures are given in millions of dollars ($m).

The cash flow from assets was:

A new company's Firm Free Cash Flow (FFCF, same as CFFA) is forecast in the graph below.

To value the firm's assets, the terminal value needs to be calculated using the perpetuity with growth formula:

###V_{\text{terminal, }t-1} = \dfrac{FFCF_{\text{terminal, }t}}{r-g}###

Which point corresponds to the best time to calculate the terminal value?

A new company's Firm Free Cash Flow (FFCF, same as CFFA) is forecast in the graph below.

To value the firm's assets, the terminal value needs to be calculated using the perpetuity with growth formula:

###V_{\text{terminal, }t-1} = \dfrac{FFCF_{\text{terminal, }t}}{r-g}###

Which point corresponds to the best time to calculate the terminal value?

The hardest and most important aspect of business project valuation is the estimation of the:

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Note that a fair gamble is a bet that has an expected value of zero, such as paying $0.50 to win $1 in a coin flip with heads or nothing if it lands tails. Fairly priced insurance is when the expected present value of the insurance premiums is equal to the expected loss from the disaster that the insurance protects against, such as the cost of rebuilding a home after a catastrophic fire.

Which of the following statements is **NOT** correct?

**Question 703** utility, risk aversion, utility function, gamble

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Each person has $500 of initial wealth. A coin toss game is offered to each person at a casino where the player can win or lose $500. Each player can flip a coin and if they flip heads, they receive $500. If they flip tails then they will lose $500. Which of the following statements is **NOT** correct?

Diversification is achieved by investing in a large amount of stocks. What type of risk is reduced by diversification?

According to the theory of the Capital Asset Pricing Model (CAPM), total risk can be broken into two components, systematic risk and idiosyncratic risk. Which of the following events would be considered a systematic, undiversifiable event according to the theory of the CAPM?

The security market line (SML) shows the relationship between beta and expected return.

Investment projects that plot **above** the SML would have:

Stock A has a beta of 0.5 and stock B has a beta of 1. Which statement is **NOT** correct?

A stock's correlation with the market portfolio increases while its total risk is unchanged. What will happen to the stock's expected return and systematic risk?

A stock has a beta of **1.5**. The market's expected total return is **10**% pa and the risk free rate is **5**% pa, both given as effective annual rates.

In the last 5 minutes, bad economic news was released showing a higher chance of recession. Over this time the share market **fell** by **1**%. The risk free rate was unchanged.

What do you think was the stock's historical return over the last 5 minutes, given as an effective 5 minute rate?

A stock has a beta of **1.5**. The market's expected total return is **10**% pa and the risk free rate is **5**% pa, both given as effective annual rates.

Over the last year, bad economic news was released showing a higher chance of recession. Over this time the share market **fell** by **1**%. The risk free rate was unchanged.

What do you think was the stock's historical return over the **last year**, given as an effective annual rate?

A firm changes its capital structure by issuing a large amount of equity and using the funds to repay debt. Its assets are unchanged. Ignore interest tax shields.

According to the Capital Asset Pricing Model (CAPM), which statement is correct?

The CAPM can be used to find a business's expected opportunity cost of capital:

###r_i=r_f+β_i (r_m-r_f)###

What should be used as the risk free rate ##r_f##?

**Question 104** CAPM, payout policy, capital structure, Miller and Modigliani, risk

Assume that there exists a perfect world with no transaction costs, no asymmetric information, no taxes, no agency costs, equal borrowing rates for corporations and individual investors, the ability to short the risk free asset, semi-strong form efficient markets, the CAPM holds, investors are rational and risk-averse and there are no other market frictions.

For a firm operating in this perfect world, which statement(s) are correct?

(i) When a firm changes its capital structure and/or payout policy, share holders' wealth is unaffected.

(ii) When the idiosyncratic risk of a firm's assets increases, share holders do not expect higher returns.

(iii) When the systematic risk of a firm's assets increases, share holders do not expect higher returns.

Select the most correct response:

The total return of any asset can be broken down in different ways. One possible way is to use the dividend discount model (or Gordon growth model):

###p_0 = \frac{c_1}{r_\text{total}-r_\text{capital}}###

Which, since ##c_1/p_0## is the income return (##r_\text{income}##), can be expressed as:

###r_\text{total}=r_\text{income}+r_\text{capital}###

So the total return of an asset is the income component plus the capital or price growth component.

Another way to break up total return is to use the Capital Asset Pricing Model:

###r_\text{total}=r_\text{f}+β(r_\text{m}- r_\text{f})###

###r_\text{total}=r_\text{time value}+r_\text{risk premium}###

So the risk free rate is the time value of money and the term ##β(r_\text{m}- r_\text{f})## is the compensation for taking on systematic risk.

Using the above theory and your general knowledge, which of the below equations, if any, are correct?

(I) ##r_\text{income}=r_\text{time value}##

(II) ##r_\text{income}=r_\text{risk premium}##

(III) ##r_\text{capital}=r_\text{time value}##

(IV) ##r_\text{capital}=r_\text{risk premium}##

(V) ##r_\text{income}+r_\text{capital}=r_\text{time value}+r_\text{risk premium}##

Which of the equations are correct?

The accounting identity states that the book value of a company's assets (A) equals its liabilities (L) plus owners equity (OE), so A = L + OE.

The finance version states that the market value of a company's assets (V) equals the market value of its debt (D) plus equity (E), so V = D + E.

Therefore a business's assets can be seen as a portfolio of the debt and equity that fund the assets.

Let ##\sigma_\text{V total}^2## be the total variance of returns on assets, ##\sigma_\text{V syst}^2## be the systematic variance of returns on assets, and ##\sigma_\text{V idio}^2## be the idiosyncratic variance of returns on assets, and ##\rho_\text{D idio, E idio}## be the correlation between the idiosyncratic returns on debt and equity.

Which of the following equations is **NOT** correct?

A stock's required total return will **increase** when its:

A stock's total standard deviation of returns is **20**% pa. The market portfolio's total standard deviation of returns is **15**% pa. The beta of the stock is **0.8**.

What is the stock's **diversifiable** standard deviation?

**Question 568** rights issue, capital raising, capital structure

A company conducts a **1** for **5** rights issue at a subscription price of $**7** when the pre-announcement stock price was $**10**. What is the percentage change in the stock price and the number of shares outstanding? The answers are given in the same order. Ignore all taxes, transaction costs and signalling effects.

**Question 625** dividend re-investment plan, capital raising

Which of the following statements about dividend re-investment plans (DRP's) is **NOT** correct?

In late 2003 the listed bank ANZ announced a 2-for-11 rights issue to fund the takeover of New Zealand bank NBNZ. Below is the chronology of events:

- 23/10/2003. Share price closes at $18.30.
- 24/10/2003. 2-for-11 rights issue announced at a subscription price of $13. The proceeds of the rights issue will be used to acquire New Zealand bank NBNZ. Trading halt announced in morning before market opens.
- 28/10/2003. Trading halt lifted. Last (and only) day that shares trade cum-rights. Share price opens at $18.00 and closes at $18.14.
- 29/10/2003. Shares trade ex-rights.

All things remaining equal, what would you expect ANZ's stock price to open at on the first day that it trades ex-rights (29/10/2003)? Ignore the time value of money since time is negligibly short. Also ignore taxes.

**Question 24** implicit interest rate in wholesale credit, effective rate

A bathroom and plumbing supplies shop offers credit to its customers. Customers are given 60 days to pay for their goods, but if they pay within 7 days they will get a 2% discount.

What is the effective interest rate implicit in the discount being offered? Assume 365 days in a year and that all customers pay on either the 7th day or the 60th day. All rates given in this question are effective annual rates.

A wholesale glass importer offers credit to its customers. Customers are given 30 days to pay for their goods, but if they pay within 5 days they will get a 1% discount.

What is the effective interest rate implicit in the discount being offered? Assume 365 days in a year and that all customers pay on either the 5th day or the 30th day. All rates given below are effective annual rates.

A wholesale building supplies business offers credit to its customers. Customers are given 60 days to pay for their goods, but if they pay within 7 days they will get a 2% discount.

What is the effective interest rate implicit in the discount being offered?

Assume 365 days in a year and that all customers pay on either the 7th day or the 60th day. All rates given below are effective annual rates.

An established mining firm announces that it expects large losses over the following year due to flooding which has temporarily stalled production at its mines. Which statement(s) are correct?

(i) If the firm adheres to a full dividend payout policy it will not pay any dividends over the following year.

(ii) If the firm wants to signal that the loss is temporary it will maintain the same level of dividends. It can do this so long as it has enough retained profits.

(iii) By law, the firm will be unable to pay a dividend over the following year because it cannot pay a dividend when it makes a loss.

Select the most correct response:

**Question 119** market efficiency, fundamental analysis, joint hypothesis problem

Your friend claims that by reading 'The Economist' magazine's economic news articles, she can identify shares that will have positive abnormal expected returns over the next 2 years. Assuming that her claim is true, which statement(s) are correct?

(i) Weak form market efficiency is broken.

(ii) Semi-strong form market efficiency is broken.

(iii) Strong form market efficiency is broken.

(iv) The asset pricing model used to measure the abnormal returns (such as the CAPM) is either wrong (mis-specification error) or is measured using the wrong inputs (data errors) so the returns may not be abnormal but rather fair for the level of risk.

Select the most correct response:

A zero coupon bond that matures in **6 months** has a face value of $1,000.

The firm that issued this bond is trying to forecast its income statement for the **year**. It needs to calculate the interest expense of the bond this year.

The bond is highly illiquid and hasn't traded on the market. But the finance department have assessed the bond's fair value to be $950 and this is its book value right now at the start of the year.

Assume that:

- the firm uses the 'effective interest method' to calculate interest expense.
- the market value of the bond is the same as the book value.
- the firm is only interested in this bond's interest expense. Do not include the interest expense for a new bond issued to refinance the current one, as would normally happen.

What will be the interest expense of the bond this year for the purpose of forecasting the income statement?

**Question 147** bill pricing, simple interest rate, no explanation

A 30-day Bank Accepted Bill has a face value of $1,000,000. The interest rate is 8% pa and there are 365 days in the year. What is its price now?

Diversification in a portfolio of two assets works best when the correlation between their returns is:

Select the most correct statement from the following.

'Chartists', also known as 'technical traders', believe that:

Your neighbour asks you for a loan of $100 and offers to pay you back $120 in one year.

You don't actually have any money right now, but you can borrow and lend from the bank at a rate of 10% pa. Rates are given as effective annual rates.

Assume that your neighbour will definitely pay you back. Ignore interest tax shields and transaction costs.

The Net Present Value (NPV) of lending to your neighbour is $9.09. Describe what you would do to actually receive a $9.09 cash flow right now with zero net cash flows in the future.

Two risky stocks A and B comprise an equal-weighted portfolio. The correlation between the stocks' returns is 70%.

If the variance of stock A **increases** but the:

- Prices and expected returns of each stock stays the same,
- Variance of stock B's returns stays the same,
- Correlation of returns between the stocks stays the same.

Which of the following statements is **NOT** correct?

Let the variance of returns for a share per month be ##\sigma_\text{monthly}^2##.

What is the formula for the variance of the share's returns per year ##(\sigma_\text{yearly}^2)##?

Assume that returns are independently and identically distributed (iid) so they have zero auto correlation, meaning that if the return was higher than average today, it does not indicate that the return tomorrow will be higher or lower than average.

**Question 308** risk, standard deviation, variance, no explanation

A stock's standard deviation of returns is expected to be:

- 0.09 per
**month**for the first 5 months; - 0.14 per
**month**for the next 7 months.

What is the expected standard deviation of the stock per **year** ##(\sigma_\text{annual})##?

Assume that returns are independently and identically distributed (iid) and therefore have zero auto-correlation.

**Question 345** capital budgeting, break even, NPV

Project Data | ||

Project life | 10 yrs | |

Initial investment in factory | $10m | |

Depreciation of factory per year | $1m | |

Expected scrap value of factory at end of project | $0 | |

Sale price per unit | $10 | |

Variable cost per unit | $6 | |

Fixed costs per year, paid at the end of each year | $2m | |

Interest expense per year | 0 | |

Tax rate | 30% | |

Cost of capital per annum | 10% | |

**Notes**

- The firm's current liabilities are forecast to stay at $0.5m. The firm's current assets (mostly inventory) is currently $1m, but is forecast to grow by $0.1m at the end of each year due to the project.

At the end of the project, the current assets accumulated due to the project can be sold for the same price that they were bought. - A marketing survey was used to forecast sales. It cost $1.4m which was just paid. The cost has been capitalised by the accountants and is tax-deductible over the life of the project, regardless of whether the project goes ahead or not. This amortisation expense is not included in the depreciation expense listed in the table above.

**Assumptions**

- All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
- All rates and cash flows are real. The inflation rate is 3% pa.
- All rates are given as effective annual rates.

Find the break even unit production (Q) per year to achieve a zero *Net Income* (NI) and *Net Present Value* (NPV), respectively. The answers below are listed in the same order.

A mature firm has constant expected future earnings and dividends. Both amounts are equal. So earnings and dividends are expected to be equal and unchanging.

Which of the following statements is **NOT** correct?

Acquirer firm plans to launch a takeover of Target firm. The deal is expected to create a present value of synergies totaling $**105** million. A **scrip** offer will be made that pays the fair price for the target's shares plus **75**% of the total synergy value.

Firms Involved in the Takeover | ||

Acquirer | Target | |

Assets ($m) | 6,000 | 700 |

Debt ($m) | 4,800 | 400 |

Share price ($) | 40 | 20 |

Number of shares (m) | 30 | 15 |

Ignore transaction costs and fees. Assume that the firms' debt and equity are fairly priced, and that each firms' debts' risk, yield and values remain constant. The acquisition is planned to occur immediately, so ignore the time value of money.

Calculate the merged firm's share price and total number of shares after the takeover has been completed.

The below screenshot of Commonwealth Bank of Australia's (CBA) details were taken from the Google Finance website on 7 Nov 2014. Some information has been deliberately blanked out.

What was CBA's approximate payout ratio over the 2014 financial year?

Note that the firm's interim and final dividends were $**1.83** and $**2.18** respectively over the 2014 financial year.

**Question 513** stock split, reverse stock split, stock dividend, bonus issue, rights issue

Which of the following statements is **NOT** correct?

**Question 556** portfolio risk, portfolio return, standard deviation

An investor wants to make a portfolio of two stocks A and B with a target expected portfolio return of **12**% pa.

- Stock A has an expected return of
**10**% pa and a standard deviation of**20**% pa. - Stock B has an expected return of
**15**% pa and a standard deviation of**30**% pa.

The correlation coefficient between stock A and B's expected returns is **70**%.

What will be the annual standard deviation of the portfolio with this 12% pa target return?

**Question 566** capital structure, capital raising, rights issue, on market repurchase, dividend, stock split, bonus issue

A company's share price fell by 20% and its number of shares rose by 25%. Assume that there are no taxes, no signalling effects and no transaction costs.

Which one of the following corporate events may have happened?

On 22-Mar-2013 the Australian Government issued series TB139 treasury bonds with a combined face value $23.4m, listed on the ASX with ticker code GSBG25.

The bonds mature on **21-Apr-2025**, the fixed coupon rate is **3.25**% pa and coupons are paid **semi-annually** on the 21st of April and October of each year. Each bond's face value is $**1,000**.

At market close on Friday **11-Sep-2015** the bonds' yield was **2.736**% pa.

At market close on Monday **14-Sep-2015** the bonds' yield was **2.701**% pa. Both yields are given as annualised percentage rates (APR's) compounding every 6 months. For convenience, assume 183 days in 6 months and 366 days in a year.

What was the historical total return over those 3 calendar days between Friday 11-Sep-2015 and Monday 14-Sep-2015?

There are **183** calendar days from market close on the last coupon 21-Apr-2015 to the market close of the next coupon date on 21-Oct-2015.

Between the market close times from 21-Apr-2015 to 11-Sep-2015 there are **143** calendar days. From 21-Apr-2015 to 14-Sep-2015 there are **146** calendar days.

From 14-Sep-2015 there were **20** coupons remaining to be paid including the next one on 21-Oct-2015.

All of the below answers are given as effective 3 day rates.

An economy has only two investable assets: stocks and cash.

Stocks had a historical nominal average total return of negative two percent per annum (-2% pa) over the last 20 years. Stocks are liquid and actively traded. Stock returns are variable, they have risk.

Cash is riskless and has a nominal constant return of zero percent per annum (0% pa), which it had in the past and will have in the future. Cash can be kept safely at zero cost. Cash can be converted into shares and vice versa at zero cost.

The nominal total return of the shares over the **next** year is **expected** to be:

A company advertises an investment costing $**1,000** which they say is underpriced. They say that it has an expected total return of **15**% pa, but a required return of only **10**% pa. Of the **15**% pa total expected return, the dividend yield is expected to always be **7**% pa and rest is the capital yield.

Assuming that the company's statements are correct, what is the NPV of buying the investment if the **15**% total return lasts for the next 100 years (t=0 to 100), then reverts to **10**% after that time? Also, what is the NPV of the investment if the 15% return lasts forever?

In both cases, assume that the required return of 10% remains constant, the dividends can only be re-invested at **10**% pa and all returns are given as effective annual rates.

The answer choices below are given in the same order (15% for 100 years, and 15% forever):

A $**100** stock has a continuously compounded expected **total** return of **10**% pa. Its **dividend** yield is **2**% pa with continuous compounding. What do you expect its price to be in **2.5** years?

A company conducts a **10** for **3** stock split. What is the percentage increase in the stock price and the number of shares outstanding? The answers are given in the same order.

Which of the below statements about utility is **NOT** generally accepted by economists? Most people are thought to:

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Which of the following statements is **NOT** correct?

The below three graphs show probability density functions (PDF) of three different random variables Red, Green and Blue.

Which of the below statements is **NOT** correct?

**Question 721** mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

Fred owns some Commonwealth Bank (CBA) shares. He has calculated CBA’s monthly returns for each month in the past 20 years using this formula:

###r_\text{t monthly}=\ln \left( \dfrac{P_t}{P_{t-1}} \right)###He then took the arithmetic average and found it to be **1**% per month using this formula:

He also found the standard deviation of these monthly returns which was **5**% per month:

Which of the below statements about Fred’s CBA shares is **NOT** correct? Assume that the past historical average return is the true population average of future expected returns.

**Question 722** mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

Here is a table of stock prices and returns. Which of the statements below the table is **NOT** correct?

Price and Return Population Statistics |
||||

Time | Prices | LGDR | GDR | NDR |

0 | 100 | |||

1 | 50 | -0.6931 | 0.5 | -0.5 |

2 | 100 | 0.6931 | 2 | 1 |

Arithmetic average | 0 | 1.25 | 0.25 | |

Arithmetic standard deviation | -0.6931 | 0.75 | 0.75 | |

**Question 707** continuously compounding rate, continuously compounding rate conversion

Convert a **10**% effective annual rate ##(r_\text{eff annual})## into a continuously compounded annual rate ##(r_\text{cc annual})##. The equivalent continuously compounded annual rate is:

The covariance and correlation of two stocks X and Y's annual returns are calculated over a number of years. The units of the returns are in percent per annum ##(\% pa)##.

What are the units of the covariance ##(\sigma_{X,Y})## and correlation ##(\rho_{X,Y})## of returns respectively?

**Hint**: Visit Wikipedia to understand the difference between percentage points ##(\text{pp})## and percent ##(\%)##.

**Question 668** buy and hold, market efficiency, idiom

A quote from the famous investor Warren Buffet: "Much success can be attributed to inactivity. Most investors cannot resist the temptation to constantly buy and sell."

Buffet is referring to the buy-and-hold strategy which is to buy and never sell shares. Which of the following is a disadvantage of a buy-and-hold strategy? Assume that share markets are semi-strong form efficient. Which of the following is **NOT** an advantage of the strict buy-and-hold strategy? A disadvantage of the buy-and-hold strategy is that it reduces:

The standard deviation and variance of a stock's annual returns are calculated over a number of years. The units of the returns are percent per annum ##(\% pa)##.

What are the units of the standard deviation ##(\sigma)## and variance ##(\sigma^2)## of returns respectively?

**Hint**: Visit Wikipedia to understand the difference between percentage points ##(\text{pp})## and percent ##(\%)##.