One and a half years ago Frank bought a house for $**600,000**. Now it's worth only $**500,000**, based on recent similar sales in the area.

The expected total return on Frank's residential property is **7**% pa.

He rents his house out for $**1,600** per month, paid in advance. Every 12 months he plans to increase the rental payments.

The present value of 12 months of rental payments is $**18,617.27**.

The future value of 12 months of rental payments one year in the future is $**19,920.48**.

What is the expected annual **rental** yield of the property? Ignore the costs of renting such as maintenance, real estate agent fees and so on.

**Question 461** book and market values, ROE, ROA, market efficiency

One year ago a pharmaceutical firm floated by selling its 1 million shares for $100 each. Its book and market values of equity were both $100m. Its debt totalled $50m. The required return on the firm's assets was 15%, equity 20% and debt 5% pa.

In the year since then, the firm:

- Earned net income of $29m.
- Paid dividends totaling $10m.
- Discovered a valuable new drug that will lead to a massive 1,000 times increase in the firm's net income in 10 years after the research is commercialised. News of the discovery was publicly announced. The firm's systematic risk remains unchanged.

Which of the following statements is **NOT** correct? All statements are about current figures, not figures one year ago.

**Hint**: Book return on assets (ROA) and book return on equity (ROE) are ratios that accountants like to use to measure a business's *past* performance.

###\text{ROA}= \dfrac{\text{Net income}}{\text{Book value of assets}}###

###\text{ROE}= \dfrac{\text{Net income}}{\text{Book value of equity}}###

The required return on assets ##r_V## is a return that financiers like to use to estimate a business's *future* required performance which compensates them for the firm's assets' risks. If the business were to achieve realised historical returns equal to its required returns, then investment into the business's assets would have been a zero-NPV decision, which is neither good nor bad but fair.

###r_\text{V, 0 to 1}= \dfrac{\text{Cash flow from assets}_\text{1}}{\text{Market value of assets}_\text{0}} = \dfrac{CFFA_\text{1}}{V_\text{0}}###

Similarly for equity and debt.

**Question 575** inflation, real and nominal returns and cash flows

You expect a **nominal** payment of $100 in 5 years. The **real** discount rate is 10% pa and the inflation rate is 3% pa. Which of the following statements is **NOT** correct?

**Question 49** inflation, real and nominal returns and cash flows, APR, effective rate

In Australia, nominal yields on **semi**-annual coupon paying Government Bonds with 2 years until maturity are currently **2.83**% pa.

The inflation rate is currently **2.2**% pa, given as an APR compounding per **quarter**. The inflation rate is not expected to change over the next 2 years.

What is the real yield on these bonds, given as an APR compounding every 6 months?

**Question 64** inflation, real and nominal returns and cash flows, APR, effective rate

In Germany, nominal yields on **semi**-annual coupon paying Government Bonds with 2 years until maturity are currently **0.04**% pa.

The inflation rate is currently **1.4**% pa, given as an APR compounding per **quarter**. The inflation rate is not expected to change over the next 2 years.

What is the real yield on these bonds, given as an APR compounding every 6 months?

For a price of $10.20 each, Renee will sell you 100 shares. Each share is expected to pay dividends in perpetuity, growing at a rate of 5% pa. The next dividend is one year away (t=1) and is expected to be $1 per share.

The required return of the stock is 15% pa.

A person is thinking about borrowing $100 from the bank at 7% pa and investing it in shares with an expected return of 10% pa. One year later the person will sell the shares and pay back the loan in full. Both the loan and the shares are fairly priced.

What is the Net Present Value (NPV) of this one year investment? Note that you are asked to find the present value (##V_0##), not the value in one year (##V_1##).

Suppose that the US government recently announced that subsidies for fresh milk producers will be gradually phased out over the next year. Newspapers say that there are expectations of a 40% increase in the spot price of fresh milk over the next year.

Option prices on fresh milk trading on the Chicago Mercantile Exchange (CME) reflect expectations of this 40% increase in spot prices over the next year. Similarly to the rest of the market, you believe that prices will rise by 40% over the next year.

What option trades are likely to be profitable, or to be more specific, result in a positive Net Present Value (NPV)?

Assume that:

- Only the spot price is expected to increase and there is no change in expected volatility or other variables that affect option prices.
- No taxes, transaction costs, information asymmetry, bid-ask spreads or other market frictions.

The following equation is called the Dividend Discount Model (DDM), Gordon Growth Model or the perpetuity with growth formula: ### P_0 = \frac{ C_1 }{ r - g } ###

What is ##g##? The value ##g## is the long term expected:

A stock is expected to pay the following dividends:

Cash Flows of a Stock | ||||||

Time (yrs) | 0 | 1 | 2 | 3 | 4 | ... |

Dividend ($) | 0.00 | 1.15 | 1.10 | 1.05 | 1.00 | ... |

After year 4, the annual dividend will grow in perpetuity at -5% pa. Note that this is a negative growth rate, so the dividend will actually shrink. So,

- the dividend at t=5 will be ##$1(1-0.05) = $0.95##,
- the dividend at t=6 will be ##$1(1-0.05)^2 = $0.9025##, and so on.

The required return on the stock is 10% pa. Both the growth rate and required return are given as effective annual rates.

What will be the price of the stock in four and a half years (t = 4.5)?

**Question 497** income and capital returns, DDM, ex dividend date

A stock will pay you a dividend of $**10** **tonight** if you buy it **today**. Thereafter the annual dividend is expected to grow by **5**% pa, so the next dividend after the $10 one tonight will be $10.50 in one year, then in two years it will be $11.025 and so on. The stock's required return is **10**% pa.

What is the stock price today and what do you expect the stock price to be tomorrow, approximately?

The following equation is the Dividend Discount Model, also known as the 'Gordon Growth Model' or the 'Perpetuity with growth' equation.

### p_0 = \frac{d_1}{r - g} ###

Which expression is **NOT** equal to the expected dividend yield?

**Question 498** NPV, Annuity, perpetuity with growth, multi stage growth model

A business project is expected to cost $100 now (t=0), then pay $10 at the end of the third (t=3), fourth, fifth and sixth years, and then grow by 5% pa every year forever. So the cash flow will be $10.5 at the end of the seventh year (t=7), then $11.025 at the end of the eighth year (t=8) and so on perpetually. The total required return is 10℅ pa.

Which of the following formulas will **NOT** give the correct net present value of the project?

You're advising your superstar client 40-cent who is weighing up buying a private jet or a luxury yacht. 40-cent is just as happy with either, but he wants to go with the more cost-effective option. These are the cash flows of the two options:

- The private jet can be bought for $6m now, which will cost $12,000 per month in fuel, piloting and airport costs, payable at the end of each month. The jet will last for
**12**years. - Or the luxury yacht can be bought for $4m now, which will cost $20,000 per month in fuel, crew and berthing costs, payable at the end of each month. The yacht will last for
**20**years.

What's unusual about 40-cent is that he is so famous that he will actually be able to sell his jet or yacht for the same price as it was bought since the next generation of superstar musicians will buy it from him as a status symbol.

Bank interest rates are 10% pa, given as an effective annual rate. You can assume that 40-cent will live for another 60 years and that when the jet or yacht's life is at an end, he will buy a new one with the same details as above.

Would you advise 40-cent to buy the or the ?

Note that the effective monthly rate is ##r_\text{eff monthly}=(1+0.1)^{1/12}-1=0.00797414##

Which firms tend to have **low** forward-looking price-earnings (PE) ratios? Only consider firms with positive PE ratios.

Which of the following statements about effective rates and annualised percentage rates (APR's) is **NOT** correct?

Which of the below statements about effective rates and annualised percentage rates (APR's) is **NOT** correct?

A zero coupon bond that matures in **6 months** has a face value of $1,000.

The firm that issued this bond is trying to forecast its income statement for the **year**. It needs to calculate the interest expense of the bond this year.

The bond is highly illiquid and hasn't traded on the market. But the finance department have assessed the bond's fair value to be $950 and this is its book value right now at the start of the year.

Assume that:

- the firm uses the 'effective interest method' to calculate interest expense.
- the market value of the bond is the same as the book value.
- the firm is only interested in this bond's interest expense. Do not include the interest expense for a new bond issued to refinance the current one, as would normally happen.

What will be the interest expense of the bond this year for the purpose of forecasting the income statement?

Which one of the following will increase the Cash Flow From Assets in this year for a tax-paying firm, all else remaining constant?

**Question 56** income and capital returns, bond pricing, premium par and discount bonds

Which of the following statements about risk free government bonds is **NOT** correct?

**Hint:** Total return can be broken into income and capital returns as follows:

###\begin{aligned} r_\text{total} &= \frac{c_1}{p_0} + \frac{p_1-p_0}{p_0} \\ &= r_\text{income} + r_\text{capital} \end{aligned} ###

The capital return is the growth rate of the price.

The income return is the periodic cash flow. For a bond this is the coupon payment.

**Question 239** income and capital returns, inflation, real and nominal returns and cash flows, interest only loan

A bank grants a borrower an **interest-only** residential mortgage loan with a very large 50% deposit and a **nominal** interest rate of **6%** that is not expected to change. Assume that inflation is expected to be a **constant 2%** pa over the life of the loan. Ignore credit risk.

From the bank's point of view, what is the long term expected **nominal capital** return of the loan asset?

Bonds A and B are issued by the same Australian company. Both bonds yield 7% pa, and they have the same face value ($100), maturity, seniority, and payment frequency.

The only difference is that bond A pays coupons of 10% pa and bond B pays coupons of 5% pa. Which of the following statements is true about the bonds' prices?

Bonds X and Y are issued by different companies, but they both pay a semi-annual coupon of **10**% pa and they have the same face value ($100) and maturity (3 years).

The only difference is that bond X and Y's **yields** are **8** and **12**% pa respectively. Which of the following statements is true?

**Question 207** income and capital returns, bond pricing, coupon rate, no explanation

For a bond that pays fixed semi-annual coupons, how is the annual coupon rate defined, and how is the bond's annual income yield from time 0 to 1 defined mathematically?

Let: ##P_0## be the bond price now,

##F_T## be the bond's face value,

##T## be the bond's maturity in years,

##r_\text{total}## be the bond's total yield,

##r_\text{income}## be the bond's income yield,

##r_\text{capital}## be the bond's capital yield, and

##C_t## be the bond's coupon at time t in years. So ##C_{0.5}## is the coupon in 6 months, ##C_1## is the coupon in 1 year, and so on.

**Question 732** real and nominal returns and cash flows, inflation, income and capital returns

An investor bought a bond for $**100** (at t=0) and one year later it paid its annual coupon of $**1** (at t=1). Just after the coupon was paid, the bond price was $**100.50** (at t=1). Inflation over the past year (from t=0 to t=1) was **3**% pa, given as an effective annual rate.

Which of the following statements is **NOT** correct? The bond investment produced a:

A share currently worth $**100** is expected to pay a constant dividend of $**4** for the next **5** years with the first dividend in one year (t=1) and the last in 5 years (t=5).

The total required return is **10**% pa.

What do you expected the share price to be in **5** years, just **after** the dividend at that time has been paid?

A three year corporate bond yields 12% pa with a coupon rate of 10% pa, paid semi-annually.

Find the effective six month yield, effective annual yield and the effective daily yield. Assume that each month has 30 days and that there are 360 days in a year.

All answers are given in the same order:

##r_\text{eff semi-annual}##, ##r_\text{eff yearly}##, ##r_\text{eff daily}##.

A student won $**1**m in a lottery. Currently the money is in a bank account which pays interest at **6**% pa, given as an APR compounding per month.

She plans to spend $**20,000** at the **beginning** of every month from now on (so the first withdrawal will be at t=0). After each withdrawal, she will check how much money is left in the account. When there is less than $**500,000** left, she will donate that remaining amount to charity.

In how many months will she make her last withdrawal and donate the remainder to charity?

The perpetuity with growth equation is:

###P_0=\dfrac{C_1}{r-g}###

Which of the following is **NOT** equal to the expected capital return as an effective annual rate?

Find Sidebar Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

Sidebar Corp | ||

Income Statement for | ||

year ending 30th June 2013 | ||

$m | ||

Sales | 405 | |

COGS | 100 | |

Depreciation | 34 | |

Rent expense | 22 | |

Interest expense | 39 | |

Taxable Income | 210 | |

Taxes at 30% | 63 | |

Net income | 147 | |

Sidebar Corp | ||

Balance Sheet | ||

as at 30th June | 2013 | 2012 |

$m | $m | |

Cash | 0 | 0 |

Inventory | 70 | 50 |

Trade debtors | 11 | 16 |

Rent paid in advance | 4 | 3 |

PPE | 700 | 680 |

Total assets | 785 | 749 |

Trade creditors | 11 | 19 |

Bond liabilities | 400 | 390 |

Contributed equity | 220 | 220 |

Retained profits | 154 | 120 |

Total L and OE | 785 | 749 |

Note: All figures are given in millions of dollars ($m).

The cash flow from assets was:

Find the cash flow from assets (CFFA) of the following project.

Project Data | ||

Project life | 2 years | |

Initial investment in equipment | $6m | |

Depreciation of equipment per year for tax purposes | $1m | |

Unit sales per year | 4m | |

Sale price per unit | $8 | |

Variable cost per unit | $3 | |

Fixed costs per year, paid at the end of each year | $1.5m | |

Tax rate | 30% | |

Note 1: The equipment will have a book value of $4m at the end of the project for tax purposes. However, the equipment is expected to fetch $0.9 million when it is sold at t=2.

Note 2: Due to the project, the firm will have to purchase $0.8m of inventory initially, which it will sell at t=1. The firm will buy another $0.8m at t=1 and sell it all again at t=2 with zero inventory left. The project will have no effect on the firm's current liabilities.

Find the project's CFFA at time zero, one and two. Answers are given in millions of dollars ($m).

The following is the Dividend Discount Model used to price stocks:

### p_0=\frac{d_1}{r-g} ###

All rates are effective annual rates and the cash flows (##d_1##) are received every year. Note that the r and g terms in the above DDM could also be labelled as below: ###r = r_{\text{total, 0}\rightarrow\text{1yr, eff 1yr}}### ###g = r_{\text{capital, 0}\rightarrow\text{1yr, eff 1yr}}### Which of the following statements is **NOT** correct?

**Question 455** income and capital returns, payout policy, DDM, market efficiency

A fairly priced **unlevered** firm plans to pay a dividend of $**1** next year (t=1) which is expected to grow by **3**% pa every year after that. The firm's required return on equity is **8**% pa.

The firm is thinking about reducing its future dividend payments by **10**% so that it can use the extra cash to invest in more projects which are expected to return **8**% pa, and have the same risk as the existing projects. Therefore, next year's dividend will be $**0.90**. No new equity or debt will be issued to fund the new projects, they'll all be funded by the cut in dividends.

What will be the stock's new annual **capital** return (proportional increase in price per year) if the change in payout policy goes ahead?

Assume that payout policy is irrelevant to firm value (so there's no signalling effects) and that all rates are effective annual rates.

Your poor friend asks to borrow some money from you. He would like $1,000 now (t=0) and every year for the next 5 years, so there will be 6 payments of $**1,000** from t=0 to t=5 inclusive. In return he will pay you $**10,000** in seven years from now (t=7).

What is the net present value (NPV) of lending to your friend?

Assume that your friend will definitely pay you back so the loan is risk-free, and that the yield on risk-free government debt is **10**% pa, given as an effective annual rate.

**Question 25** bond pricing, zero coupon bond, term structure of interest rates, forward interest rate

A European company just issued two bonds, a

- 2 year zero coupon bond at a yield of 8% pa, and a
- 3 year zero coupon bond at a yield of 10% pa.

What is the company's forward rate over the third year (from t=2 to t=3)? Give your answer as an effective annual rate, which is how the above bond yields are quoted.

**Question 96** bond pricing, zero coupon bond, term structure of interest rates, forward interest rate

An Australian company just issued two bonds paying semi-annual coupons:

- 1 year zero coupon bond at a yield of 8% pa, and a
- 2 year zero coupon bond at a yield of 10% pa.

What is the forward rate on the company's debt from years 1 to 2? Give your answer as an APR compounding every **6** months, which is how the above bond yields are quoted.

**Question 624** franking credit, personal tax on dividends, imputation tax system, no explanation

Which of the following statements about Australian franking credits is **NOT** correct? Franking credits:

Interest expense (IntExp) is an important part of a company's income statement (or 'profit and loss' or 'statement of financial performance').

How does an **accountant** calculate the annual interest expense of a fixed-coupon bond that has a liquid secondary market? Select the most correct answer:

Annual interest expense is equal to:

A manufacturing company is considering a new project in the more risky services industry. The cash flows from assets (CFFA) are estimated for the new project, with interest expense excluded from the calculations. To get the levered value of the project, what should these unlevered cash flows be discounted by?

Assume that the manufacturing firm has a target debt-to-assets ratio that it sticks to.

One method for calculating a firm's free cash flow (FFCF, or CFFA) is to ignore interest expense. That is, pretend that interest expense ##(IntExp)## is zero:

###\begin{aligned} FFCF &= (Rev - COGS - Depr - FC - IntExp)(1-t_c) + Depr - CapEx -\Delta NWC + IntExp \\ &= (Rev - COGS - Depr - FC - 0)(1-t_c) + Depr - CapEx -\Delta NWC - 0\\ \end{aligned}###

Over the next year, the management of an **unlevered** company plans to:

- Make $
**5**m in sales, $**1.9m**in net income and $**2**m in equity free cash flow (EFCF). - Pay dividends of $
**1**m. - Complete a $
**1.3**m share buy-back.

Assume that:

- All amounts are received and paid at the end of the year so you can ignore the time value of money.
- The firm has sufficient retained profits to legally pay the dividend and complete the buy back.
- The firm plans to run a very tight ship, with no excess cash above operating requirements currently or over the next year.

How much new equity financing will the company need? In other words, what is the value of new shares that will need to be issued?

Find World Bar's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

World Bar | ||

Income Statement for | ||

year ending 30th June 2013 | ||

$m | ||

Sales | 300 | |

COGS | 150 | |

Operating expense | 50 | |

Depreciation | 40 | |

Interest expense | 10 | |

Taxable income | 50 | |

Tax at 30% | 15 | |

Net income | 35 | |

World Bar | ||

Balance Sheet | ||

as at 30th June | 2013 | 2012 |

$m | $m | |

Assets | ||

Current assets | 200 | 230 |

PPE | ||

Cost | 400 | 400 |

Accumul. depr. | 75 | 35 |

Carrying amount | 325 | 365 |

Total assets | 525 | 595 |

Liabilities | ||

Current liabilities | 150 | 205 |

Non-current liabilities | 235 | 250 |

Owners' equity | ||

Retained earnings | 100 | 100 |

Contributed equity | 40 | 40 |

Total L and OE | 525 | 595 |

Note: all figures above and below are given in millions of dollars ($m).

Find Scubar Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

Scubar Corp | ||

Income Statement for | ||

year ending 30th June 2013 | ||

$m | ||

Sales | 200 | |

COGS | 60 | |

Depreciation | 20 | |

Rent expense | 11 | |

Interest expense | 19 | |

Taxable Income | 90 | |

Taxes at 30% | 27 | |

Net income | 63 | |

Scubar Corp | ||

Balance Sheet | ||

as at 30th June | 2013 | 2012 |

$m | $m | |

Inventory | 60 | 50 |

Trade debtors | 19 | 6 |

Rent paid in advance | 3 | 2 |

PPE | 420 | 400 |

Total assets | 502 | 458 |

Trade creditors | 10 | 8 |

Bond liabilities | 200 | 190 |

Contributed equity | 130 | 130 |

Retained profits | 162 | 130 |

Total L and OE | 502 | 458 |

Note: All figures are given in millions of dollars ($m).

The cash flow from assets was:

**Question 370** capital budgeting, NPV, interest tax shield, WACC, CFFA

Project Data | ||

Project life | 2 yrs | |

Initial investment in equipment | $600k | |

Depreciation of equipment per year | $250k | |

Expected sale price of equipment at end of project | $200k | |

Revenue per job | $12k | |

Variable cost per job | $4k | |

Quantity of jobs per year | 120 | |

Fixed costs per year, paid at the end of each year | $100k | |

Interest expense in first year (at t=1) | $16.091k | |

Interest expense in second year (at t=2) | $9.711k | |

Tax rate | 30% | |

Government treasury bond yield | 5% | |

Bank loan debt yield | 6% | |

Levered cost of equity | 12.5% | |

Market portfolio return | 10% | |

Beta of assets | 1.24 | |

Beta of levered equity | 1.5 | |

Firm's and project's debt-to-equity ratio |
25% | |

**Notes**

- The project will require an immediate purchase of $
**50**k of inventory, which will all be sold at cost when the project ends. Current liabilities are negligible so they can be ignored.

**Assumptions**

- The debt-to-equity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio. Note that interest expense is different in each year.
- Thousands are represented by 'k' (kilo).
- All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
- All rates and cash flows are nominal. The inflation rate is 2% pa.
- All rates are given as effective annual rates.
- The 50% capital gains tax discount is not available since the project is undertaken by a firm, not an individual.

What is the net present value (NPV) of the project?

**Question 337** capital structure, interest tax shield, leverage, real and nominal returns and cash flows, multi stage growth model

A fast-growing firm is suitable for valuation using a multi-stage growth model.

It's **nominal** unlevered cash flow from assets (##CFFA_U##) at the end of this year (**t=1**) is expected to be $**1** million. After that it is expected to grow at a rate of:

**12**% pa for the next two years (from t=1 to 3),**5**% over the fourth year (from t=3 to 4), and**-1**% forever after that (from t=4 onwards). Note that this is a negative one percent growth rate.

Assume that:

- The nominal WACC
**after**tax is**9.5**% pa and is not expected to change. - The nominal WACC
**before**tax is**10**% pa and is not expected to change. - The firm has a target debt-to-
**equity**ratio that it plans to maintain. - The inflation rate is
**3**% pa. - All rates are given as
**nominal**effective annual rates.

What is the levered value of this fast growing firm's assets?

A company has:

- 50 million shares outstanding.
- The market price of one share is currently $6.
- The risk-free rate is 5% and the market return is 10%.
- Market analysts believe that the company's ordinary shares have a beta of
**2**. - The company has 1 million preferred stock which have a face (or par) value of $100 and pay a constant dividend of 10% of par. They currently trade for $80 each.
- The company's debentures are publicly traded and their market price is equal to 90% of their face value.
- The debentures have a total face value of $60,000,000 and the current yield to maturity of corporate debentures is 10% per annum. The corporate tax rate is 30%.

What is the company's after-tax weighted average cost of capital (WACC)? Assume a classical tax system.

**Question 237** WACC, Miller and Modigliani, interest tax shield

Which of the following discount rates should be the **highest** for a levered company? Ignore the costs of financial distress.

**Question 738** financial statement, balance sheet, income statement

Where can a private firm's market value of equity be found? It can be sourced from the company's:

**Question 749** Multiples valuation, PE ratio, price to revenue ratio, price to book ratio, NPV

A real estate agent says that the price of a house in Sydney Australia is approximately equal to the gross weekly rent times 1000.

What type of valuation method is the real estate agent using?

**Question 760** time calculation, interest only loan, no explanation

**Five** years ago (##t=-5## years) you entered into an **interest-only** home loan with a principal of $**500,000**, an interest rate of **4.5**% pa compounding monthly with a term of **25** years.

Then interest rates suddenly fall to **3**% pa (##t=0##), but you continue to pay the same monthly home loan payments as you did before. Will your home loan be paid off by the end of its remaining term? If so, in how many years from now? Measure the time taken to pay off the home loan from the current time which is 5 years after the home loan was first entered into.

Assume that the lower interest rate was given to you immediately after the loan repayment at the end of year 5, which was the 60th payment since the loan was granted. Also assume that rates were and are expected to remain constant.

Radio-Rentals.com offers the Apple iphone 5S smart phone for rent at $**12.95** per week paid in **advance** on a **2** year contract. After renting the phone, you must return it to Radio-Rentals.

Kogan.com offers the Apple iphone 5S smart phone for sale at $**699**. You estimate that the phone will last for **3** years before it will break and be worthless.

Currently, the effective annual interest rate is **11.351**%, the effective monthly interest rate **0.9**% and the effective weekly interest rate is **0.207**%. Assume that there are exactly **52** weeks per year and **12** months per year.

Find the equivalent annual cost of renting the phone and also buying the phone. The answers below are listed in the same order.

Which of the following investable assets is the **LEAST** suitable for valuation using PE multiples techniques?

A firm has **2**m shares and a market capitalisation of equity of $**30**m. The firm just announced earnings of $**5**m and paid an annual dividend of $**0.75** per share.

What is the firm's (backward looking) price/earnings (PE) ratio?

Let the 'income return' of a bond be the coupon at the end of the period divided by the market price now at the start of the period ##(C_1/P_0)##. The expected income return of a **premium** fixed coupon bond is:

Your main expense is fuel for your car which costs $100 per month. You just refueled, so you won't need any more fuel for another month (first payment at t=1 month).

You have $2,500 in a bank account which pays interest at a rate of 6% pa, payable monthly. Interest rates are not expected to change.

Assuming that you have no income, in how many months time will you not have enough money to **fully** refuel your car?

Over the next year, the management of an unlevered company plans to:

- Achieve firm free cash flow (FFCF or CFFA) of $1m.
- Pay dividends of $1.8m
- Complete a $1.3m share buy-back.
- Spend $0.8m on new buildings without buying or selling any other fixed assets. This capital expenditure is included in the CFFA figure quoted above.

Assume that:

- All amounts are received and paid at the end of the year so you can ignore the time value of money.
- The firm has sufficient retained profits to pay the dividend and complete the buy back.
- The firm plans to run a very tight ship, with no excess cash above operating requirements currently or over the next year.

How much new equity financing will the company need? In other words, what is the value of new shares that will need to be issued?

Value the following business project to manufacture a new product.

Project Data | ||

Project life | 2 yrs | |

Initial investment in equipment | $6m | |

Depreciation of equipment per year | $3m | |

Expected sale price of equipment at end of project | $0.6m | |

Unit sales per year | 4m | |

Sale price per unit | $8 | |

Variable cost per unit | $5 | |

Fixed costs per year, paid at the end of each year | $1m | |

Interest expense per year | 0 | |

Tax rate | 30% | |

Weighted average cost of capital after tax per annum | 10% | |

**Notes**

- The firm's current assets and current liabilities are $3m and $2m respectively right now. This net working capital will not be used in this project, it will be used in other unrelated projects.

Due to the project, current assets (mostly inventory) will grow by $2m initially (at t = 0), and then by $0.2m at the end of the first year (t=1).

Current liabilities (mostly trade creditors) will increase by $0.1m at the end of the first year (t=1).

At the end of the project, the net working capital accumulated due to the project can be sold for the same price that it was bought. - The project cost $0.5m to research which was incurred one year ago.

**Assumptions**

- All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
- All rates and cash flows are real. The inflation rate is 3% pa.
- All rates are given as effective annual rates.
- The business considering the project is run as a 'sole tradership' (run by an individual without a company) and is therefore eligible for a 50% capital gains tax discount when the equipment is sold, as permitted by the Australian Tax Office.

What is the expected net present value (NPV) of the project?

An old company's Firm Free Cash Flow (FFCF, same as CFFA) is forecast in the graph below.

To value the firm's assets, the terminal value needs to be calculated using the perpetuity with growth formula:

###V_{\text{terminal, }t-1} = \dfrac{FFCF_{\text{terminal, }t}}{r-g}###

Which point corresponds to the best time to calculate the terminal value?

Find Ching-A-Lings Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.

Ching-A-Lings Corp | ||

Income Statement for | ||

year ending 30th June 2013 | ||

$m | ||

Sales | 100 | |

COGS | 20 | |

Depreciation | 20 | |

Rent expense | 11 | |

Interest expense | 19 | |

Taxable Income | 30 | |

Taxes at 30% | 9 | |

Net income | 21 | |

Ching-A-Lings Corp | ||

Balance Sheet | ||

as at 30th June | 2013 | 2012 |

$m | $m | |

Inventory | 49 | 38 |

Trade debtors | 14 | 2 |

Rent paid in advance | 5 | 5 |

PPE | 400 | 400 |

Total assets | 468 | 445 |

Trade creditors | 4 | 10 |

Bond liabilities | 200 | 190 |

Contributed equity | 145 | 145 |

Retained profits | 119 | 100 |

Total L and OE | 468 | 445 |

Note: All figures are given in millions of dollars ($m).

The cash flow from assets was:

**Question 559** variance, standard deviation, covariance, correlation

Which of the following statements about standard statistical mathematics notation is **NOT** correct?

A $**100** stock has a continuously compounded expected **total** return of **10**% pa. Its **dividend** yield is **2**% pa with continuous compounding. What do you expect its price to be in **2.5** years?

A project's Profitability Index (PI) is less than 1. Select the most correct statement:

A project has an internal rate of return (IRR) which is greater than its required return. Select the most correct statement.

**Question 700** utility, risk aversion, utility function, gamble

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Each person has $50 of initial wealth. A coin toss game is offered to each person at a casino where the player can win or lose $50. Each player can flip a coin and if they flip heads, they receive $50. If they flip tails then they will lose $50. Which of the following statements is **NOT** correct?

Let the standard deviation of returns for a share per month be ##\sigma_\text{monthly}##.

What is the formula for the standard deviation of the share's returns per year ##(\sigma_\text{yearly})##?

Assume that returns are independently and identically distributed (iid) so they have zero auto correlation, meaning that if the return was higher than average today, it does not indicate that the return tomorrow will be higher or lower than average.

**Question 339** bond pricing, inflation, market efficiency, income and capital returns

Economic statistics released this morning were a surprise: they show a strong chance of consumer price inflation (CPI) reaching 5% pa over the next 2 years.

This is much higher than the previous forecast of 3% pa.

A vanilla fixed-coupon 2-year risk-free government bond was issued at **par** this morning, just **before** the economic news was released.

What is the expected change in bond price after the economic news this morning, and in the next 2 years? Assume that:

- Inflation remains at 5% over the next 2 years.
- Investors demand a constant real bond yield.
- The bond price falls by the (after-tax) value of the coupon the night before the ex-coupon date, as in real life.

**Question 119** market efficiency, fundamental analysis, joint hypothesis problem

Your friend claims that by reading 'The Economist' magazine's economic news articles, she can identify shares that will have positive abnormal expected returns over the next 2 years. Assuming that her claim is true, which statement(s) are correct?

(i) Weak form market efficiency is broken.

(ii) Semi-strong form market efficiency is broken.

(iii) Strong form market efficiency is broken.

(iv) The asset pricing model used to measure the abnormal returns (such as the CAPM) is either wrong (mis-specification error) or is measured using the wrong inputs (data errors) so the returns may not be abnormal but rather fair for the level of risk.

Select the most correct response:

**Question 338** market efficiency, CAPM, opportunity cost, technical analysis

A man inherits $**500,000** worth of shares.

He believes that by learning the secrets of trading, keeping up with the financial news and doing complex trend analysis with charts that he can quit his job and become a self-employed day trader in the equities markets.

What is the expected gain from doing this over the first year? Measure the net gain in wealth received at the end of this first year due to the decision to become a day trader. Assume the following:

- He earns $
**60,000**pa in his current job, paid in a lump sum at the end of each year. - He enjoys examining share price graphs and day trading just as much as he enjoys his current job.
- Stock markets are weak form and semi-strong form efficient.
- He has no inside information.
- He makes
**1**trade every day and there are**250**trading days in the year. Trading costs are $**20**per trade. His broker invoices him for the trading costs at the end of the year. - The shares that he currently owns and the shares that he intends to trade have the same level of systematic risk as the market portfolio.
- The market portfolio's expected return is
**10**% pa.

Measure the **net gain** over the **first** year as an expected wealth increase at the **end** of the year.

Select the most correct statement from the following.

'Chartists', also known as 'technical traders', believe that:

A managed fund charges fees based on the amount of money that you keep with them. The fee is **2**% of the **start**-of-year amount, but it is paid at the **end** of every year.

This fee is charged regardless of whether the fund makes gains or losses on your money.

The fund offers to invest your money in shares which have an expected return of **10**% pa before fees.

You are thinking of investing $**100,000** in the fund and keeping it there for **40** years when you plan to retire.

What is the Net Present Value (NPV) of investing your money in the fund? Note that the question is **not** asking how much money you will have in 40 years, it is asking: what is the **NPV** of investing in the fund? Assume that:

- The fund has no private information.
- Markets are weak and semi-strong form efficient.
- The fund's transaction costs are negligible.
- The cost and trouble of investing your money in shares by yourself, without the managed fund, is negligible.

A managed fund charges fees based on the amount of money that you keep with them. The fee is **2**% of the **end**-of-year amount, paid at the **end** of every year.

This fee is charged regardless of whether the fund makes gains or losses on your money.

The fund offers to invest your money in shares which have an expected return of **10%** pa before fees.

You are thinking of investing $**100,000** in the fund and keeping it there for **40** years when you plan to retire.

How much money do you expect to have in the fund in 40 years? Also, what is the future value of the fees that the fund expects to earn from you? Give both amounts as future values in 40 years. Assume that:

- The fund has no private information.
- Markets are weak and semi-strong form efficient.
- The fund's transaction costs are negligible.
- The cost and trouble of investing your money in shares by yourself, without the managed fund, is negligible.
- The fund invests its fees in the same companies as it invests your funds in, but with no fees.

The below answer choices list your expected wealth in 40 years and then the fund's expected wealth in 40 years.

A stock has a beta of **1.5**. The market's expected total return is **10**% pa and the risk free rate is **5**% pa, both given as effective annual rates.

In the last 5 minutes, bad economic news was released showing a higher chance of recession. Over this time the share market **fell** by **1**%. The risk free rate was unchanged.

What do you think was the stock's historical return over the last 5 minutes, given as an effective 5 minute rate?

**Question 397** financial distress, leverage, capital structure, NPV

A levered firm has a market value of assets of $**10**m. Its debt is all comprised of zero-coupon bonds which mature in one year and have a combined face value of $**9.9**m.

Investors are risk-neutral and therefore all debt and equity holders demand the same required return of **10**% pa.

Therefore the current market capitalisation of debt ##(D_0)## is $**9**m and equity ##(E_0)## is $**1**m.

A new project presents itself which requires an investment of $**2**m and will provide a:

- $
**6.6**m cash flow with probability 0.5 in the good state of the world, and a **-**$**4.4**m (notice the negative sign) cash flow with probability 0.5 in the bad state of the world.

The project can be funded using the company's excess cash, no debt or equity raisings are required.

What would be the new market capitalisation of equity ##(E_\text{0, with project})## if shareholders vote to proceed with the project, and therefore should shareholders proceed with the project?

You believe that the price of a share will fall significantly very soon, but the rest of the market does not. The market thinks that the share price will remain the same. Assuming that your prediction will soon be true, which of the following trades is a bad idea? In other words, which trade will **NOT** make money or prevent losses?

**Question 312** foreign exchange rate, American and European terms

If the current AUD exchange rate is USD 0.9686 = AUD 1, what is the American terms quote of the AUD against the USD?

**Question 245** foreign exchange rate, monetary policy, foreign exchange rate direct quote, no explanation

Investors expect Australia's central bank, the RBA, to leave the policy rate unchanged at their next meeting.

Then unexpectedly, the policy rate is reduced due to fears that Australia's GDP growth is slowing.

What do you expect to happen to Australia's exchange rate? Direct and indirect quotes are given from the perspective of an Australian.

The Australian dollar will:

Three important classes of investable risky assets are:

- Corporate debt which has low total risk,
- Real estate which has medium total risk,
- Equity which has high total risk.

Assume that the correlation between total returns on:

- Corporate debt and real estate is 0.1,
- Corporate debt and equity is 0.1,
- Real estate and equity is 0.5.

You are considering investing all of your wealth in one or more of these asset classes. Which portfolio will give the lowest total risk? You are restricted from shorting any of these assets. Disregard returns and the risk-return trade-off, pretend that you are only concerned with minimising risk.

The accounting identity states that the book value of a company's assets (A) equals its liabilities (L) plus owners equity (OE), so A = L + OE.

The finance version states that the market value of a company's assets (V) equals the market value of its debt (D) plus equity (E), so V = D + E.

Therefore a business's assets can be seen as a portfolio of the debt and equity that fund the assets.

Let ##\sigma_\text{V total}^2## be the total variance of returns on assets, ##\sigma_\text{V syst}^2## be the systematic variance of returns on assets, and ##\sigma_\text{V idio}^2## be the idiosyncratic variance of returns on assets, and ##\rho_\text{D idio, E idio}## be the correlation between the idiosyncratic returns on debt and equity.

Which of the following equations is **NOT** correct?

The current gold price is $**700**, gold storage costs are **2**% pa and the risk free rate is **10**% pa, both with **continuous compounding**.

What should be the **3** year gold futures price?

**Question 722** mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

Here is a table of stock prices and returns. Which of the statements below the table is **NOT** correct?

Price and Return Population Statistics |
||||

Time | Prices | LGDR | GDR | NDR |

0 | 100 | |||

1 | 50 | -0.6931 | 0.5 | -0.5 |

2 | 100 | 0.6931 | 2 | 1 |

Arithmetic average | 0 | 1.25 | 0.25 | |

Arithmetic standard deviation | 0.9802 | 1.0607 | 1.0607 | |

**Question 723** mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

Here is a table of stock prices and returns. Which of the statements below the table is **NOT** correct?

Price and Return Population Statistics |
||||

Time | Prices | LGDR | GDR | NDR |

0 | 100 | |||

1 | 99 | -0.010050 | 0.990000 | -0.010000 |

2 | 180.40 | 0.600057 | 1.822222 | 0.822222 |

3 | 112.73 | 0.470181 | 0.624889 | 0.375111 |

Arithmetic average | 0.0399 | 1.1457 | 0.1457 | |

Arithmetic standard deviation | 0.4384 | 0.5011 | 0.5011 | |

**Question 779** mean and median returns, return distribution, arithmetic and geometric averages, continuously compounding rate

Fred owns some BHP shares. He has calculated BHP’s monthly returns for each month in the past 30 years using this formula:

###r_\text{t monthly}=\ln \left( \dfrac{P_t}{P_{t-1}} \right)###He then took the arithmetic average and found it to be **0.8**% per month using this formula:

He also found the standard deviation of these monthly returns which was **15**% per month:

Assume that the past historical average return is the true population average of future expected returns and the stock's returns calculated above ##(r_\text{t monthly})## are normally distributed. Which of the below statements about Fred’s BHP shares is **NOT** correct?

The equations for Net Income (NI, also known as Earnings or Net Profit After Tax) and Cash Flow From Assets (CFFA, also known as Free Cash Flow to the Firm) per year are:

###NI=(Rev-COGS-FC-Depr-IntExp).(1-t_c)###

###CFFA=NI+Depr-CapEx - \varDelta NWC+IntExp###

For a firm with debt, what is the formula for the present value of interest tax shields if the tax shields occur in perpetuity?

You may assume:

- the value of debt (D) is constant through time,
- The cost of debt and the yield on debt are equal and given by ##r_D##.
- the appropriate rate to discount interest tax shields is ##r_D##.
- ##\text{IntExp}=D.r_D##

**Question 772** interest tax shield, capital structure, leverage

A firm issues debt and uses the funds to buy back equity. Assume that there are no costs of financial distress or transactions costs. Which of the following statements about interest tax shields is **NOT** correct?