# Fight Finance

#### CoursesTagsRandomAllRecentScores

You have $100,000 in the bank. The bank pays interest at 10% pa, given as an effective annual rate. You wish to consume an equal amount now (t=0) and in one year (t=1) and have nothing left in the bank at the end (t=1). How much can you consume at each time? You have$100,000 in the bank. The bank pays interest at 10% pa, given as an effective annual rate.

You wish to consume an equal amount now (t=0), in one year (t=1) and in two years (t=2), and still have $50,000 in the bank after that (t=2). How much can you consume at each time? Your neighbour asks you for a loan of$100 and offers to pay you back $120 in one year. You don't actually have any money right now, but you can borrow and lend from the bank at a rate of 10% pa. Rates are given as effective annual rates. Assume that your neighbour will definitely pay you back. Ignore interest tax shields and transaction costs. The Net Present Value (NPV) of lending to your neighbour is$9.09. Describe what you would do to actually receive a $9.09 cash flow right now with zero net cash flows in the future. An investor owns an empty block of land that has local government approval to be developed into a petrol station, car wash or car park. The council will only allow a single development so the projects are mutually exclusive. All of the development projects have the same risk and the required return of each is 10% pa. Each project has an immediate cost and once construction is finished in one year the land and development will be sold. The table below shows the estimated costs payable now, expected sale prices in one year and the internal rates of returns (IRR's).  Mutually Exclusive Projects Project Costnow ($) Sale price inone year ($) IRR(% pa) Petrol station 9,000,000 11,000,000 22.22 Car wash 800,000 1,100,000 37.50 Car park 70,000 110,000 57.14 Which project should the investor accept? An investor owns a whole level of an old office building which is currently worth$1 million. There are three mutually exclusive projects that can be started by the investor. The office building level can be:

• Rented out to a tenant for one year at $0.1m paid immediately, and then sold for$0.99m in one year.
• Refurbished into more modern commercial office rooms at a cost of $1m now, and then sold for$2.4m when the refurbishment is finished in one year.
• Converted into residential apartments at a cost of $2m now, and then sold for$3.4m when the conversion is finished in one year.

All of the development projects have the same risk so the required return of each is 10% pa. The table below shows the estimated cash flows and internal rates of returns (IRR's).

 Mutually Exclusive Projects Project Cash flownow ($) Cash flow inone year ($) IRR(% pa) Rent then sell as is -900,000 990,000 10 Refurbishment into modern offices -2,000,000 2,400,000 20 Conversion into residential apartments -3,000,000 3,400,000 13.33

Which project should the investor accept?

The required return of a project is 10%, given as an effective annual rate. Assume that the cash flows shown in the table are paid all at once at the given point in time.

What is the Net Present Value (NPV) of the project?

 Project Cash Flows Time (yrs) Cash flow ($) 0 -100 1 0 2 121 What is the Internal Rate of Return (IRR) of the project detailed in the table below? Assume that the cash flows shown in the table are paid all at once at the given point in time. All answers are given as effective annual rates.  Project Cash Flows Time (yrs) Cash flow ($) 0 -100 1 0 2 121

If a project's net present value (NPV) is zero, then its internal rate of return (IRR) will be:

The required return of a project is 10%, given as an effective annual rate.

What is the payback period of the project in years?

Assume that the cash flows shown in the table are received smoothly over the year. So the $121 at time 2 is actually earned smoothly from t=1 to t=2.  Project Cash Flows Time (yrs) Cash flow ($) 0 -100 1 11 2 121

A project has the following cash flows:

 Project Cash Flows Time (yrs) Cash flow ($) 0 -400 1 0 2 500 What is the payback period of the project in years? Normally cash flows are assumed to happen at the given time. But here, assume that the cash flows are received smoothly over the year. So the$500 at time 2 is actually earned smoothly from t=1 to t=2.

The below graph shows a project's net present value (NPV) against its annual discount rate.

For what discount rate or range of discount rates would you accept and commence the project?

All answer choices are given as approximations from reading off the graph.

The below graph shows a project's net present value (NPV) against its annual discount rate.

Which of the following statements is NOT correct?

A firm is considering a business project which costs $11m now and is expected to pay a constant$1m at the end of every year forever.

Assume that the initial $11m cost is funded using the firm's existing cash so no new equity or debt will be raised. The cost of capital is 10% pa. Which of the following statements about net present value (NPV), internal rate of return (IRR) and payback period is NOT correct? How many years will it take for an asset's price to double if the price grows by 10% pa? How many years will it take for an asset's price to quadruple (be four times as big, say from$1 to $4) if the price grows by 15% pa? The saying "buy low, sell high" suggests that investors should make a: Total cash flows can be broken into income and capital cash flows. What is the name given to the income cash flow from owning shares? An asset's total expected return over the next year is given by: $$r_\text{total} = \dfrac{c_1+p_1-p_0}{p_0}$$ Where $p_0$ is the current price, $c_1$ is the expected income in one year and $p_1$ is the expected price in one year. The total return can be split into the income return and the capital return. Which of the following is the expected capital return? A share was bought for$30 (at t=0) and paid its annual dividend of $6 one year later (at t=1). Just after the dividend was paid, the share price fell to$27 (at t=1). What were the total, capital and income returns given as effective annual rates?

The choices are given in the same order:

$r_\text{total}$ , $r_\text{capital}$ , $r_\text{dividend}$.

One and a half years ago Frank bought a house for $600,000. Now it's worth only$500,000, based on recent similar sales in the area.

The expected total return on Frank's residential property is 7% pa.

He rents his house out for $1,600 per month, paid in advance. Every 12 months he plans to increase the rental payments. The present value of 12 months of rental payments is$18,617.27.

The future value of 12 months of rental payments one year in the future is $19,920.48. What is the expected annual rental yield of the property? Ignore the costs of renting such as maintenance, real estate agent fees and so on. For an asset price to double every 10 years, what must be the expected future capital return, given as an effective annual rate? Imagine that the interest rate on your savings account was 1% per year and inflation was 2% per year. After one year, would you be able to buy , exactly the as or than today with the money in this account? A residential investment property has an expected nominal total return of 6% pa and nominal capital return of 3% pa. Inflation is expected to be 2% pa. All rates are given as effective annual rates. What are the property's expected real total, capital and income returns? The answer choices below are given in the same order. A stock has a real expected total return of 7% pa and a real expected capital return of 2% pa. Inflation is expected to be 2% pa. All rates are given as effective annual rates. What is the nominal expected total return, capital return and dividend yield? The answers below are given in the same order. Which of the following statements about cash in the form of notes and coins is NOT correct? Assume that inflation is positive. Notes and coins: When valuing assets using discounted cash flow (net present value) methods, it is important to consider inflation. To properly deal with inflation: (I) Discount nominal cash flows by nominal discount rates. (II) Discount nominal cash flows by real discount rates. (III) Discount real cash flows by nominal discount rates. (IV) Discount real cash flows by real discount rates. Which of the above statements is or are correct? How can a nominal cash flow be precisely converted into a real cash flow? You expect a nominal payment of$100 in 5 years. The real discount rate is 10% pa and the inflation rate is 3% pa. Which of the following statements is NOT correct?

What is the present value of a real payment of $500 in 2 years? The nominal discount rate is 7% pa and the inflation rate is 4% pa. On his 20th birthday, a man makes a resolution. He will put$30 cash under his bed at the end of every month starting from today. His birthday today is the first day of the month. So the first addition to his cash stash will be in one month. He will write in his will that when he dies the cash under the bed should be given to charity.

If the man lives for another 60 years, how much money will be under his bed if he dies just after making his last (720th) addition?

Also, what will be the real value of that cash in today's prices if inflation is expected to 2.5% pa? Assume that the inflation rate is an effective annual rate and is not expected to change.

The answers are given in the same order, the amount of money under his bed in 60 years, and the real value of that money in today's prices.

You're considering making an investment in a particular company. They have preference shares, ordinary shares, senior debt and junior debt.

Which is the safest investment? Which will give the highest returns?

Which business structure or structures have the advantage of limited liability for equity investors?

Who is most in danger of being personally bankrupt? Assume that all of their businesses' assets are highly liquid and can therefore be sold immediately.

The below screenshot of Commonwealth Bank of Australia's (CBA) details were taken from the Google Finance website on 7 Nov 2014. Some information has been deliberately blanked out.

What was CBA's market capitalisation of equity?

The investment decision primarily affects which part of a business?

The financing decision primarily affects which part of a business?

Business people make lots of important decisions. Which of the following is the most important long term decision?

The expression 'you have to spend money to make money' relates to which business decision?

Suppose you had $100 in a savings account and the interest rate was 2% per year. After 5 years, how much do you think you would have in the account if you left the money to grow? than$102, $102 or than$102?

Do you think that the following statement is or ? “Buying a single company stock usually provides a safer return than a stock mutual fund.”

Your main expense is fuel for your car which costs $100 per month. You just refueled, so you won't need any more fuel for another month (first payment at t=1 month). You have$2,500 in a bank account which pays interest at a rate of 6% pa, payable monthly. Interest rates are not expected to change.

Assuming that you have no income, in how many months time will you not have enough money to fully refuel your car?

You're trying to save enough money for a deposit to buy a house. You want to buy a house worth $400,000 and the bank requires a 20% deposit ($80,000) before it will give you a loan for the other $320,000 that you need. You currently have no savings, but you just started working and can save$2,000 per month, with the first payment in one month from now. Bank interest rates on savings accounts are 4.8% pa with interest paid monthly and interest rates are not expected to change.

How long will it take to save the $80,000 deposit? Round your answer up to the nearest month. Which of the following is NOT a synonym of 'required return'? You have$100,000 in the bank. The bank pays interest at 10% pa, given as an effective annual rate.

You wish to consume half as much now (t=0) as in one year (t=1) and have nothing left in the bank at the end.

How much can you consume at time zero and one? The answer choices are given in the same order.

Which of the following equations is NOT equal to the total return of an asset?

Let $p_0$ be the current price, $p_1$ the expected price in one year and $c_1$ the expected income in one year.

A stock was bought for $8 and paid a dividend of$0.50 one year later (at t=1 year). Just after the dividend was paid, the stock price was $7 (at t=1 year). What were the total, capital and dividend returns given as effective annual rates? The choices are given in the same order: $r_\text{total}$, $r_\text{capital}$, $r_\text{dividend}$. A fixed coupon bond was bought for$90 and paid its annual coupon of $3 one year later (at t=1 year). Just after the coupon was paid, the bond price was$92 (at t=1 year). What was the total return, capital return and income return? Calculate your answers as effective annual rates.

The choices are given in the same order: $r_\text{total},r_\text{capital},r_\text{income}$.

A residential investment property has an expected nominal total return of 8% pa and nominal capital return of 3% pa.

Inflation is expected to be 2% pa. All rates are given as effective annual rates.

What are the property's expected real total, capital and income returns? The answer choices below are given in the same order.

You are a banker about to grant a 2 year loan to a customer. The loan's principal and interest will be repaid in a single payment at maturity, sometimes called a zero-coupon loan, discount loan or bullet loan.

You require a real return of 6% pa over the two years, given as an effective annual rate. Inflation is expected to be 2% this year and 4% next year, both given as effective annual rates.

You judge that the customer can afford to pay back $1,000,000 in 2 years, given as a nominal cash flow. How much should you lend to her right now? The below screenshot of Microsoft's (MSFT) details were taken from the Google Finance website on 28 Nov 2014. Some information has been deliberately blanked out. What was MSFT's market capitalisation of equity? If a firm makes a profit and pays no dividends, which of the firm’s accounts will increase? The working capital decision primarily affects which part of a business? Payout policy is most closely related to which part of a business? Total cash flows can be broken into income and capital cash flows. What is the name given to the cash flow generated from selling shares at a higher price than they were bought? For an asset price to triple every 5 years, what must be the expected future capital return, given as an effective annual rate? Which of the following statements is NOT correct? Apples and oranges currently cost$1 each. Inflation is 5% pa, and apples and oranges are equally affected by this inflation rate. Note that when payments are not specified as real, as in this question, they're conventionally assumed to be nominal.

Which of the following statements is NOT correct?

Which of the following statements about inflation is NOT correct?

What is the present value of a nominal payment of $1,000 in 4 years? The nominal discount rate is 8% pa and the inflation rate is 2% pa. A residential investment property has an expected nominal total return of 6% pa and nominal capital return of 2.5% pa. Inflation is expected to be 2.5% pa. All of the above are effective nominal rates and investors believe that they will stay the same in perpetuity. What are the property's expected real total, capital and income returns? The answer choices below are given in the same order. A low-growth mature stock has an expected nominal total return of 6% pa and nominal capital return of 2% pa. Inflation is expected to be 3% pa. All of the above are effective nominal rates and investors believe that they will stay the same in perpetuity. What are the stock's expected real total, capital and income returns? The answer choices below are given in the same order. Katya offers to pay you$10 at the end of every year for the next 5 years (t=1,2,3,4,5) if you pay her $50 now (t=0). You can borrow and lend from the bank at an interest rate of 10% pa, given as an effective annual rate. Ignore credit risk. Will you or Katya's deal? There are many ways to write the ordinary annuity formula. Which of the following is NOT equal to the ordinary annuity formula? This annuity formula $\dfrac{C_1}{r}\left(1-\dfrac{1}{(1+r)^3} \right)$ is equivalent to which of the following formulas? Note the 3. In the below formulas, $C_t$ is a cash flow at time t. All of the cash flows are equal, but paid at different times. The following cash flows are expected: • 10 yearly payments of$60, with the first payment in 3 years from now (first payment at t=3 and last at t=12).
• 1 payment of $400 in 5 years and 6 months (t=5.5) from now. What is the NPV of the cash flows if the discount rate is 10% given as an effective annual rate? Your friend overheard that you need some cash and asks if you would like to borrow some money. She can lend you$5,000 now (t=0), and in return she wants you to pay her back $1,000 in two years (t=2) and every year after that for the next 5 years, so there will be 6 payments of$1,000 from t=2 to t=7 inclusive.

What is the net present value (NPV) of borrowing from your friend?

Assume that banks loan funds at interest rates of 10% pa, given as an effective annual rate.

A project to build a toll bridge will take two years to complete, costing three payments of $100 million at the start of each year for the next three years, that is at t=0, 1 and 2. After completion, the toll bridge will yield a constant$50 million at the end of each year for the next 10 years. So the first payment will be at t=3 and the last at t=12. After the last payment at t=12, the bridge will be given to the government.

The required return of the project is 21% pa given as an effective annual nominal rate.

All cash flows are real and the expected inflation rate is 10% pa given as an effective annual rate. Ignore taxes.

The Net Present Value is:

Some countries' interest rates are so low that they're zero.

If interest rates are 0% pa and are expected to stay at that level for the foreseeable future, what is the most that you would be prepared to pay a bank now if it offered to pay you $10 at the end of every year for the next 5 years? In other words, what is the present value of five$10 payments at time 1, 2, 3, 4 and 5 if interest rates are 0% pa?

Discounted cash flow (DCF) valuation prices assets by finding the present value of the asset's future cash flows. The single cash flow, annuity, and perpetuity equations are very useful for this.

Which of the following equations is the 'perpetuity with growth' equation?

The following equation is called the Dividend Discount Model (DDM), Gordon Growth Model or the perpetuity with growth formula: $$P_0 = \frac{ C_1 }{ r - g }$$

What is $g$? The value $g$ is the long term expected:

For a price of $13, Carla will sell you a share which will pay a dividend of$1 in one year and every year after that forever. The required return of the stock is 10% pa.

Would you like to Carla's share or politely ?

The first payment of a constant perpetual annual cash flow is received at time 5. Let this cash flow be $C_5$ and the required return be $r$.

So there will be equal annual cash flows at time 5, 6, 7 and so on forever, and all of the cash flows will be equal so $C_5 = C_6 = C_7 = ...$

When the perpetuity formula is used to value this stream of cash flows, it will give a value (V) at time:

For a price of $1040, Camille will sell you a share which just paid a dividend of$100, and is expected to pay dividends every year forever, growing at a rate of 5% pa.

So the next dividend will be $100(1+0.05)^1=105.00$, and the year after it will be $100(1+0.05)^2=110.25$ and so on.

The required return of the stock is 15% pa.

Would you like to the share or politely ?

The following equation is the Dividend Discount Model, also known as the 'Gordon Growth Model' or the 'Perpetuity with growth' equation.

$$P_{0} = \frac{C_1}{r_{\text{eff}} - g_{\text{eff}}}$$

What would you call the expression $C_1/P_0$?

The following cash flows are expected:

• 10 yearly payments of $80, with the first payment in 3 years from now (first payment at t=3). • 1 payment of$600 in 5 years and 6 months (t=5.5) from now.

What is the NPV of the cash flows if the discount rate is 10% given as an effective annual rate?

A stock’s current price is $1. Its expected total return is 10% pa and its long term expected capital return is 4% pa. It pays an annual dividend and the next one will be paid in one year. All rates are given as effective annual rates. The dividend discount model is thought to be a suitable model for the stock. Ignore taxes. Which of the following statements about the stock is NOT correct? In the dividend discount model (DDM), share prices fall when dividends are paid. Let the high price before the fall be called the peak, and the low price after the fall be called the trough. $$P_0=\dfrac{C_1}{r-g}$$ Which of the following statements about the DDM is NOT correct? A stock will pay you a dividend of$10 tonight if you buy it today. Thereafter the annual dividend is expected to grow by 5% pa, so the next dividend after the $10 one tonight will be$10.50 in one year, then in two years it will be $11.025 and so on. The stock's required return is 10% pa. What is the stock price today and what do you expect the stock price to be tomorrow, approximately? In the dividend discount model: $$P_0 = \dfrac{C_1}{r-g}$$ The return $r$ is supposed to be the: The following equation is the Dividend Discount Model, also known as the 'Gordon Growth Model' or the 'Perpetuity with growth' equation. $$p_0 = \frac{d_1}{r - g}$$ Which expression is NOT equal to the expected dividend yield? Estimate the US bank JP Morgan's share price using a price earnings (PE) multiples approach with the following assumptions and figures only: • The major US banks JP Morgan Chase (JPM), Citi Group (C) and Wells Fargo (WFC) are comparable companies; • JP Morgan Chase's historical earnings per share (EPS) is$4.37;
• Citi Group's share price is $50.05 and historical EPS is$4.26;
• Wells Fargo's share price is $48.98 and historical EPS is$3.89.

Note: Figures sourced from Google Finance on 24 March 2014.

Estimate Microsoft's (MSFT) share price using a price earnings (PE) multiples approach with the following assumptions and figures only:

• Apple, Google and Microsoft are comparable companies,
• Apple's (AAPL) share price is $526.24 and historical EPS is$40.32.
• Google's (GOOG) share price is $1,215.65 and historical EPS is$36.23.
• Micrsoft's (MSFT) historical earnings per share (EPS) is $2.71. Source: Google Finance 28 Feb 2014. Details of two different types of light bulbs are given below: • Low-energy light bulbs cost$3.50, have a life of nine years, and use about $1.60 of electricity a year, paid at the end of each year. • Conventional light bulbs cost only$0.50, but last only about a year and use about $6.60 of energy a year, paid at the end of each year. The real discount rate is 5%, given as an effective annual rate. Assume that all cash flows are real. The inflation rate is 3% given as an effective annual rate. Find the Equivalent Annual Cost (EAC) of the low-energy and conventional light bulbs. The below choices are listed in that order. Carlos and Edwin are brothers and they both love Holden Commodore cars. Carlos likes to buy the latest Holden Commodore car for$40,000 every 4 years as soon as the new model is released. As soon as he buys the new car, he sells the old one on the second hand car market for $20,000. Carlos never has to bother with paying for repairs since his cars are brand new. Edwin also likes Commodores, but prefers to buy 4-year old cars for$20,000 and keep them for 11 years until the end of their life (new ones last for 15 years in total but the 4-year old ones only last for another 11 years). Then he sells the old car for $2,000 and buys another 4-year old second hand car, and so on. Every time Edwin buys a second hand 4 year old car he immediately has to spend$1,000 on repairs, and then $1,000 every year after that for the next 10 years. So there are 11 payments in total from when the second hand car is bought at t=0 to the last payment at t=10. One year later (t=11) the old car is at the end of its total 15 year life and can be scrapped for$2,000.

Assuming that Carlos and Edwin maintain their love of Commodores and keep up their habits of buying new ones and second hand ones respectively, how much larger is Carlos' equivalent annual cost of car ownership compared with Edwin's?

The real discount rate is 10% pa. All cash flows are real and are expected to remain constant. Inflation is forecast to be 3% pa. All rates are effective annual. Ignore capital gains tax and tax savings from depreciation since cars are tax-exempt for individuals.

An investor bought a bond for $100 (at t=0) and one year later it paid its annual coupon of$1 (at t=1). Just after the coupon was paid, the bond price was $100.50 (at t=1). Inflation over the past year (from t=0 to t=1) was 3% pa, given as an effective annual rate. Which of the following statements is NOT correct? The bond investment produced a: An equities analyst is using the dividend discount model to price a company's shares. The company operates domestically and has no plans to expand overseas. It is part of a mature industry with stable positive growth prospects. The analyst has estimated the real required return (r) of the stock and the value of the dividend that the stock just paid a moment before $(C_\text{0 before})$. What is the highest perpetual real growth rate of dividends (g) that can be justified? Select the most correct statement from the following choices. The highest perpetual real expected growth rate of dividends that can be justified is the country's expected: A low-quality second-hand car can be bought now for$1,000 and will last for 1 year before it will be scrapped for nothing.

A high-quality second-hand car can be bought now for $4,900 and it will last for 5 years before it will be scrapped for nothing. What is the equivalent annual cost of each car? Assume a discount rate of 10% pa, given as an effective annual rate. The answer choices are given as the equivalent annual cost of the low-quality car and then the high quality car. You just bought a nice dress which you plan to wear once per month on nights out. You bought it a moment ago for$600 (at t=0). In your experience, dresses used once per month last for 6 years.

Your younger sister is a student with no money and wants to borrow your dress once a month when she hits the town. With the increased use, your dress will only last for another 3 years rather than 6.

What is the present value of the cost of letting your sister use your current dress for the next 3 years?

Assume: that bank interest rates are 10% pa, given as an effective annual rate; you will buy a new dress when your current one wears out; your sister will only use the current dress, not the next one that you will buy; and the price of a new dress never changes.

You're about to buy a car. These are the cash flows of the two different cars that you can buy:

• You can buy an old car for $5,000 now, for which you will have to buy$90 of fuel at the end of each week from the date of purchase. The old car will last for 3 years, at which point you will sell the old car for $500. • Or you can buy a new car for$14,000 now for which you will have to buy $50 of fuel at the end of each week from the date of purchase. The new car will last for 4 years, at which point you will sell the new car for$1,000.

Bank interest rates are 10% pa, given as an effective annual rate. Assume that there are exactly 52 weeks in a year. Ignore taxes and environmental and pollution factors.

Should you buy the or the ?

An 'interest payment' is the same thing as a 'coupon payment'. or ?

An 'interest rate' is the same thing as a 'coupon rate'. or ?

An 'interest rate' is the same thing as a 'yield'. or ?

Which of the following statements is NOT equivalent to the yield on debt?

Assume that the debt being referred to is fairly priced, but do not assume that it's priced at par.

Which of the following statements is NOT correct? Borrowers:

Which of the following statements is NOT correct? Lenders:

Which of the below statements about effective rates and annualised percentage rates (APR's) is NOT correct?

A credit card offers an interest rate of 18% pa, compounding monthly.

Find the effective monthly rate, effective annual rate and the effective daily rate. Assume that there are 365 days in a year.

All answers are given in the same order:

$$r_\text{eff monthly} , r_\text{eff yearly} , r_\text{eff daily}$$

In Australia, nominal yields on semi-annual coupon paying Government Bonds with 2 years until maturity are currently 2.83% pa.

The inflation rate is currently 2.2% pa, given as an APR compounding per quarter. The inflation rate is not expected to change over the next 2 years.

What is the real yield on these bonds, given as an APR compounding every 6 months?

On his 20th birthday, a man makes a resolution. He will deposit $30 into a bank account at the end of every month starting from now, which is the start of the month. So the first payment will be in one month. He will write in his will that when he dies the money in the account should be given to charity. The bank account pays interest at 6% pa compounding monthly, which is not expected to change. If the man lives for another 60 years, how much money will be in the bank account if he dies just after making his last (720th) payment? You want to buy an apartment priced at$300,000. You have saved a deposit of $30,000. The bank has agreed to lend you the$270,000 as a fully amortising loan with a term of 25 years. The interest rate is 12% pa and is not expected to change.

What will be your monthly payments? Remember that mortgage loan payments are paid in arrears (at the end of the month).

A 10 year Australian government bond was just issued at par with a yield of 3.9% pa. The fixed coupon payments are semi-annual. The bond has a face value of $1,000. Six months later, just after the first coupon is paid, the yield of the bond decreases to 3.65% pa. What is the bond's new price? Which one of the below statements about effective rates and annualised percentage rates (APR's) is NOT correct? Many Australian home loans that are interest-only actually require payments to be made on a fully amortising basis after a number of years. You decide to borrow$600,000 from the bank at an interest rate of 4.25% pa for 25 years. The payments will be interest-only for the first 10 years (t=0 to 10 years), then they will have to be paid on a fully amortising basis for the last 15 years (t=10 to 25 years).

Assuming that interest rates will remain constant, what will be your monthly payments over the first 10 years from now, and then the next 15 years after that? The answer options are given in the same order.

You just entered into a fully amortising home loan with a principal of $600,000, a variable interest rate of 4.25% pa and a term of 25 years. Immediately after settling the loan, the variable interest rate suddenly falls to 4% pa! You can't believe your luck. Despite this, you plan to continue paying the same home loan payments as you did before. How long will it now take to pay off your home loan? Assume that the lower interest rate was granted immediately and that rates were and are now again expected to remain constant. Round your answer up to the nearest whole month. A home loan company advertises an interest rate of 6% pa, payable monthly. Which of the following statements about the interest rate is NOT correct? All rates are given to four decimal places. A credit card company advertises an interest rate of 18% pa, payable monthly. Which of the following statements about the interest rate is NOT correct? All rates are given to four decimal places. A semi-annual coupon bond has a yield of 3% pa. Which of the following statements about the yield is NOT correct? All rates are given to four decimal places. How much more can you borrow using an interest-only loan compared to a 25-year fully amortising loan if interest rates are 6% pa compounding per month and are not expected to change? If it makes it easier, assume that you can afford to pay$2,000 per month on either loan. Express your answer as a proportional increase using the following formula:

$$\text{Proportional Increase} = \dfrac{V_\text{0,interest only}}{V_\text{0,fully amortising}} - 1$$

You want to buy an apartment worth $500,000. You have saved a deposit of$50,000. The bank has agreed to lend you the $450,000 as a fully amortising mortgage loan with a term of 25 years. The interest rate is 6% pa and is not expected to change. What will be your monthly payments? You want to buy an apartment worth$400,000. You have saved a deposit of $80,000. The bank has agreed to lend you the$320,000 as a fully amortising mortgage loan with a term of 30 years. The interest rate is 6% pa and is not expected to change. What will be your monthly payments?

You just signed up for a 30 year fully amortising mortgage loan with monthly payments of $2,000 per month. The interest rate is 9% pa which is not expected to change. How much did you borrow? After 5 years, how much will be owing on the mortgage? The interest rate is still 9% and is not expected to change. You just signed up for a 30 year fully amortising mortgage with monthly payments of$1,000 per month. The interest rate is 6% pa which is not expected to change.

How much did you borrow? After 20 years, how much will be owing on the mortgage? The interest rate is still 6% and is not expected to change.

You just signed up for a 30 year fully amortising mortgage loan with monthly payments of $1,500 per month. The interest rate is 9% pa which is not expected to change. How much did you borrow? After 10 years, how much will be owing on the mortgage? The interest rate is still 9% and is not expected to change. You want to buy an apartment priced at$300,000. You have saved a deposit of $30,000. The bank has agreed to lend you the$270,000 as an interest only loan with a term of 25 years. The interest rate is 12% pa and is not expected to change.

What will be your monthly payments? Remember that mortgage payments are paid in arrears (at the end of the month).

You just signed up for a 30 year interest-only mortgage with monthly payments of $3,000 per month. The interest rate is 6% pa which is not expected to change. How much did you borrow? After 15 years, just after the 180th payment at that time, how much will be owing on the mortgage? The interest rate is still 6% and is not expected to change. Remember that the mortgage is interest-only and that mortgage payments are paid in arrears (at the end of the month). You just borrowed$400,000 in the form of a 25 year interest-only mortgage with monthly payments of $3,000 per month. The interest rate is 9% pa which is not expected to change. You actually plan to pay more than the required interest payment. You plan to pay$3,300 in mortgage payments every month, which your mortgage lender allows. These extra payments will reduce the principal and the minimum interest payment required each month.

At the maturity of the mortgage, what will be the principal? That is, after the last (300th) interest payment of $3,300 in 25 years, how much will be owing on the mortgage? You want to buy an apartment worth$300,000. You have saved a deposit of $60,000. The bank has agreed to lend you$240,000 as an interest only mortgage loan with a term of 30 years. The interest rate is 6% pa and is not expected to change. What will be your monthly payments?

You want to buy an apartment priced at $500,000. You have saved a deposit of$50,000. The bank has agreed to lend you the $450,000 as an interest only loan with a term of 30 years. The interest rate is 6% pa and is not expected to change. What will be your monthly payments? A bank grants a borrower an interest-only residential mortgage loan with a very large 50% deposit and a nominal interest rate of 6% that is not expected to change. Assume that inflation is expected to be a constant 2% pa over the life of the loan. Ignore credit risk. From the bank's point of view, what is the long term expected nominal capital return of the loan asset? In Australia in the 1980's, inflation was around 8% pa, and residential mortgage loan interest rates were around 14%. In 2013, inflation was around 2.5% pa, and residential mortgage loan interest rates were around 4.5%. If a person can afford constant mortgage loan payments of$2,000 per month, how much more can they borrow when interest rates are 4.5% pa compared with 14.0% pa?

Give your answer as a proportional increase over the amount you could borrow when interest rates were high $(V_\text{high rates})$, so:

$$\text{Proportional increase} = \dfrac{V_\text{low rates}-V_\text{high rates}}{V_\text{high rates}}$$

Assume that:

• Interest rates are expected to be constant over the life of the loan.
• Loans are interest-only and have a life of 30 years.
• Mortgage loan payments are made every month in arrears and all interest rates are given as annualised percentage rates (APR's) compounding per month.

For a price of $95, Nicole will sell you a 10 year bond paying semi-annual coupons of 8% pa. The face value of the bond is$100. Other bonds with the same risk, maturity and coupon characteristics trade at a yield of 8% pa.

Would you like to the bond or politely ?

For a price of $100, Vera will sell you a 2 year bond paying semi-annual coupons of 10% pa. The face value of the bond is$100. Other bonds with similar risk, maturity and coupon characteristics trade at a yield of 8% pa.

Would you like to her bond or politely ?

Calculate the price of a newly issued ten year bond with a face value of $100, a yield of 8% pa and a fixed coupon rate of 6% pa, paid semi-annually. So there are two coupons per year, paid in arrears every six months. Calculate the price of a newly issued ten year bond with a face value of$100, a yield of 8% pa and a fixed coupon rate of 6% pa, paid annually. So there's only one coupon per year, paid in arrears every year.

Bonds X and Y are issued by the same US company. Both bonds yield 10% pa, and they have the same face value ($100), maturity, seniority, and payment frequency. The only difference is that bond X and Y's coupon rates are 8 and 12% pa respectively. Which of the following statements is true? Bonds A and B are issued by the same company. They have the same face value, maturity, seniority and coupon payment frequency. The only difference is that bond A has a 5% coupon rate, while bond B has a 10% coupon rate. The yield curve is flat, which means that yields are expected to stay the same. Which bond would have the higher current price? A two year Government bond has a face value of$100, a yield of 0.5% and a fixed coupon rate of 0.5%, paid semi-annually. What is its price?

A two year Government bond has a face value of 100, a yield of 2.5% pa and a fixed coupon rate of 0.5% pa, paid semi-annually. What is its price? Which of the following statements about risk free government bonds is NOT correct? Hint: Total return can be broken into income and capital returns as follows: \begin{aligned} r_\text{total} &= \frac{c_1}{p_0} + \frac{p_1-p_0}{p_0} \\ &= r_\text{income} + r_\text{capital} \end{aligned} The capital return is the growth rate of the price. The income return is the periodic cash flow. For a bond this is the coupon payment. A bond maturing in 10 years has a coupon rate of 4% pa, paid semi-annually. The bond's yield is currently 6% pa. The face value of the bond is100. What is its price?

Bonds A and B are issued by the same Australian company. Both bonds yield 7% pa, and they have the same face value ($100), maturity, seniority, and payment frequency. The only difference is that bond A pays coupons of 10% pa and bond B pays coupons of 5% pa. Which of the following statements is true about the bonds' prices? Bonds X and Y are issued by different companies, but they both pay a semi-annual coupon of 10% pa and they have the same face value ($100) and maturity (3 years).

The only difference is that bond X and Y's yields are 8 and 12% pa respectively. Which of the following statements is true?

A three year bond has a fixed coupon rate of 12% pa, paid semi-annually. The bond's yield is currently 6% pa. The face value is $100. What is its price? Bonds X and Y are issued by different companies, but they both pay a semi-annual coupon of 10% pa and they have the same face value ($100), maturity (3 years) and yield (10%) as each other.

Which of the following statements is true?

A four year bond has a face value of $100, a yield of 6% and a fixed coupon rate of 12%, paid semi-annually. What is its price? Which one of the following bonds is trading at a discount? A five year bond has a face value of$100, a yield of 12% and a fixed coupon rate of 6%, paid semi-annually.

What is the bond's price?

Which one of the following bonds is trading at par?

A firm wishes to raise $8 million now. They will issue 7% pa semi-annual coupon bonds that will mature in 10 years and have a face value of$100 each. Bond yields are 10% pa, given as an APR compounding every 6 months, and the yield curve is flat.

How many bonds should the firm issue?

For a bond that pays fixed semi-annual coupons, how is the annual coupon rate defined, and how is the bond's annual income yield from time 0 to 1 defined mathematically?

Let: $P_0$ be the bond price now,

$F_T$ be the bond's face value,

$T$ be the bond's maturity in years,

$r_\text{total}$ be the bond's total yield,

$r_\text{income}$ be the bond's income yield,

$r_\text{capital}$ be the bond's capital yield, and

$C_t$ be the bond's coupon at time t in years. So $C_{0.5}$ is the coupon in 6 months, $C_1$ is the coupon in 1 year, and so on.

The coupon rate of a fixed annual-coupon bond is constant (always the same).

What can you say about the income return ($r_\text{income}$) of a fixed annual coupon bond? Remember that:

$$r_\text{total} = r_\text{income} + r_\text{capital}$$

$$r_\text{total, 0 to 1} = \frac{c_1}{p_0} + \frac{p_1-p_0}{p_0}$$

Assume that there is no change in the bond's total annual yield to maturity from when it is issued to when it matures.

Select the most correct statement.

From its date of issue until maturity, the income return of a fixed annual coupon:

Issuing debt doesn't give away control of the firm because debt holders can't cast votes to determine the company's affairs, such as at the annual general meeting (AGM), and can't appoint directors to the board. or ?

Companies must pay interest and principal payments to debt-holders. They're compulsory. But companies are not forced to pay dividends to share holders. or ?

Your friend just bought a house for $400,000. He financed it using a$320,000 mortgage loan and a deposit of $80,000. In the context of residential housing and mortgages, the 'equity' tied up in the value of a person's house is the value of the house less the value of the mortgage. So the initial equity your friend has in his house is$80,000. Let this amount be E, let the value of the mortgage be D and the value of the house be V. So $V=D+E$.

If house prices suddenly fall by 10%, what would be your friend's percentage change in equity (E)? Assume that the value of the mortgage is unchanged and that no income (rent) was received from the house during the short time over which house prices fell.

Remember:

$$r_{0\rightarrow1}=\frac{p_1-p_0+c_1}{p_0}$$

where $r_{0-1}$ is the return (percentage change) of an asset with price $p_0$ initially, $p_1$ one period later, and paying a cash flow of $c_1$ at time $t=1$.

Your friend just bought a house for $1,000,000. He financed it using a$900,000 mortgage loan and a deposit of $100,000. In the context of residential housing and mortgages, the 'equity' or 'net wealth' tied up in a house is the value of the house less the value of the mortgage loan. Assuming that your friend's only asset is his house, his net wealth is$100,000.

If house prices suddenly fall by 15%, what would be your friend's percentage change in net wealth?

Assume that:

• No income (rent) was received from the house during the short time over which house prices fell.
• Your friend will not declare bankruptcy, he will always pay off his debts.

One year ago you bought $100,000 of shares partly funded using a margin loan. The margin loan size was$70,000 and the other 30,000 was your own wealth or 'equity' in the share assets. The interest rate on the margin loan was 7.84% pa. Over the year, the shares produced a dividend yield of 4% pa and a capital gain of 5% pa. What was the total return on your wealth? Ignore taxes, assume that all cash flows (interest payments and dividends) were paid and received at the end of the year, and all rates above are effective annual rates. Hint: Remember that wealth in this context is your equity (E) in the house asset (V = D+E) which is funded by the loan (D) and your deposit or equity (E). Here are the Net Income (NI) and Cash Flow From Assets (CFFA) equations: $$NI=(Rev-COGS-FC-Depr-IntExp).(1-t_c)$$ $$CFFA=NI+Depr-CapEx - \varDelta NWC+IntExp$$ What is the formula for calculating annual interest expense (IntExp) which is used in the equations above? Select one of the following answers. Note that D is the value of debt which is constant through time, and $r_D$ is the cost of debt. Interest expense (IntExp) is an important part of a company's income statement (or 'profit and loss' or 'statement of financial performance'). How does an accountant calculate the annual interest expense of a fixed-coupon bond that has a liquid secondary market? Select the most correct answer: Annual interest expense is equal to: Which one of the following will increase the Cash Flow From Assets in this year for a tax-paying firm, all else remaining constant? Which one of the following will decrease net income (NI) but increase cash flow from assets (CFFA) in this year for a tax-paying firm, all else remaining constant? Remember: $$NI=(Rev-COGS-FC-Depr-IntExp).(1-t_c )$$ $$CFFA=NI+Depr-CapEx - ΔNWC+IntExp$$ A retail furniture company buys furniture wholesale and distributes it through its retail stores. The owner believes that she has some good ideas for making stylish new furniture. She is considering a project to buy a factory and employ workers to manufacture the new furniture she's designed. Furniture manufacturing has more systematic risk than furniture retailing. Her furniture retailing firm's after-tax WACC is 20%. Furniture manufacturing firms have an after-tax WACC of 30%. Both firms are optimally geared. Assume a classical tax system. Which method(s) will give the correct valuation of the new furniture-making project? Select the most correct answer. The US firm Google operates in the online advertising business. In 2011 Google bought Motorola Mobility which manufactures mobile phones. Assume the following: • Google had a 10% after-tax weighted average cost of capital (WACC) before it bought Motorola. • Motorola had a 20% after-tax WACC before it merged with Google. • Google and Motorola have the same level of gearing. • Both companies operate in a classical tax system. You are a manager at Motorola. You must value a project for making mobile phones. Which method(s) will give the correct valuation of the mobile phone manufacturing project? Select the most correct answer. The mobile phone manufacturing project's: A method commonly seen in textbooks for calculating a levered firm's free cash flow (FFCF, or CFFA) is the following: \begin{aligned} FFCF &= (Rev - COGS - Depr - FC - IntExp)(1-t_c) + \\ &\space\space\space+ Depr - CapEx -\Delta NWC + IntExp(1-t_c) \\ \end{aligned} Does this annual FFCF or the annual interest tax shield? One formula for calculating a levered firm's free cash flow (FFCF, or CFFA) is to use earnings before interest and tax (EBIT). \begin{aligned} FFCF &= (EBIT)(1-t_c) + Depr - CapEx -\Delta NWC + IntExp.t_c \\ &= (Rev - COGS - Depr - FC)(1-t_c) + Depr - CapEx -\Delta NWC + IntExp.t_c \\ \end{aligned} \\ Does this annual FFCF or the annual interest tax shield? One method for calculating a firm's free cash flow (FFCF, or CFFA) is to ignore interest expense. That is, pretend that interest expense $(IntExp)$ is zero: \begin{aligned} FFCF &= (Rev - COGS - Depr - FC - IntExp)(1-t_c) + Depr - CapEx -\Delta NWC + IntExp \\ &= (Rev - COGS - Depr - FC - 0)(1-t_c) + Depr - CapEx -\Delta NWC - 0\\ \end{aligned} Does this annual FFCF with zero interest expense or the annual interest tax shield? One formula for calculating a levered firm's free cash flow (FFCF, or CFFA) is to use net operating profit after tax (NOPAT). \begin{aligned} FFCF &= NOPAT + Depr - CapEx -\Delta NWC \\ &= (Rev - COGS - Depr - FC)(1-t_c) + Depr - CapEx -\Delta NWC \\ \end{aligned} \\ Does this annual FFCF or the annual interest tax shield? There are many ways to calculate a firm's free cash flow (FFCF), also called cash flow from assets (CFFA). One method is to use the following formulas to transform net income (NI) into FFCF including interest and depreciation tax shields: $$FFCF=NI + Depr - CapEx -ΔNWC + IntExp$$ $$NI=(Rev - COGS - Depr - FC - IntExp).(1-t_c )$$ Another popular method is to use EBITDA rather than net income. EBITDA is defined as: $$EBITDA=Rev - COGS - FC$$ One of the below formulas correctly calculates FFCF from EBITDA, including interest and depreciation tax shields, giving an identical answer to that above. Which formula is correct? Value the following business project to manufacture a new product.  Project Data Project life 2 yrs Initial investment in equipment6m Depreciation of equipment per year $3m Expected sale price of equipment at end of project$0.6m Unit sales per year 4m Sale price per unit $8 Variable cost per unit$5 Fixed costs per year, paid at the end of each year $1m Interest expense per year 0 Tax rate 30% Weighted average cost of capital after tax per annum 10% Notes 1. The firm's current assets and current liabilities are$3m and $2m respectively right now. This net working capital will not be used in this project, it will be used in other unrelated projects. Due to the project, current assets (mostly inventory) will grow by$2m initially (at t = 0), and then by $0.2m at the end of the first year (t=1). Current liabilities (mostly trade creditors) will increase by$0.1m at the end of the first year (t=1).
At the end of the project, the net working capital accumulated due to the project can be sold for the same price that it was bought.
2. The project cost $0.5m to research which was incurred one year ago. Assumptions • All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year. • All rates and cash flows are real. The inflation rate is 3% pa. • All rates are given as effective annual rates. • The business considering the project is run as a 'sole tradership' (run by an individual without a company) and is therefore eligible for a 50% capital gains tax discount when the equipment is sold, as permitted by the Australian Tax Office. What is the expected net present value (NPV) of the project? A young lady is trying to decide if she should attend university. Her friends say that she should go to university because she is more likely to meet a clever young man than if she begins full time work straight away. What's the correct way to classify this item from a capital budgeting perspective when trying to find the Net Present Value of going to university rather than working? The opportunity to meet a desirable future spouse should be classified as: A man is thinking about taking a day off from his casual painting job to relax. He just woke up early in the morning and he's about to call his boss to say that he won't be coming in to work. But he's thinking about the hours that he could work today (in the future) which are: A man has taken a day off from his casual painting job to relax. It's the end of the day and he's thinking about the hours that he could have spent working (in the past) which are now: Find Candys Corporation's Cash Flow From Assets (CFFA), also known as Free Cash Flow to the Firm (FCFF), over the year ending 30th June 2013.  Candys Corp Income Statement for year ending 30th June 2013$m Sales 200 COGS 50 Operating expense 10 Depreciation 20 Interest expense 10 Income before tax 110 Tax at 30% 33 Net income 77
 Candys Corp Balance Sheet as at 30th June 2013 2012 $m$m Assets Current assets 220 180 PPE Cost 300 340 Accumul. depr. 60 40 Carrying amount 240 300 Total assets 460 480 Liabilities Current liabilities 175 190 Non-current liabilities 135 130 Owners' equity Retained earnings 50 60 Contributed equity 100 100 Total L and OE 460 480

Note: all figures are given in millions of dollars ($m). To value a business's assets, the free cash flow of the firm (FCFF, also called CFFA) needs to be calculated. This requires figures from the firm's income statement and balance sheet. For what figures is the balance sheet needed? Note that the balance sheet is sometimes also called the statement of financial position. Cash Flow From Assets (CFFA) can be defined as: Which one of the following will decrease net income (NI) but increase cash flow from assets (CFFA) in this year for a tax-paying firm, all else remaining constant? Remember: $$NI = (Rev-COGS-FC-Depr-IntExp).(1-t_c )$$ $$CFFA=NI+Depr-CapEx - \Delta NWC+IntExp$$ Which one of the following will have no effect on net income (NI) but decrease cash flow from assets (CFFA or FFCF) in this year for a tax-paying firm, all else remaining constant? Remember: $$NI=(Rev-COGS-FC-Depr-IntExp).(1-t_c )$$ $$CFFA=NI+Depr-CapEx - ΔNWC+IntExp$$ Find the cash flow from assets (CFFA) of the following project.  One Year Mining Project Data Project life 1 year Initial investment in building mine and equipment$9m Depreciation of mine and equipment over the year $8m Kilograms of gold mined at end of year 1,000 Sale price per kilogram$0.05m Variable cost per kilogram $0.03m Before-tax cost of closing mine at end of year$4m Tax rate 30%

Note 1: Due to the project, the firm also anticipates finding some rare diamonds which will give before-tax revenues of $1m at the end of the year. Note 2: The land that will be mined actually has thermal springs and a family of koalas that could be sold to an eco-tourist resort for an after-tax amount of$3m right now. However, if the mine goes ahead then this natural beauty will be destroyed.

Note 3: The mining equipment will have a book value of $1m at the end of the year for tax purposes. However, the equipment is expected to fetch$2.5m when it is sold.

Find the project's CFFA at time zero and one. Answers are given in millions of dollars ($m), with the first cash flow at time zero, and the second at time one.  Project Data Project life 2 yrs Initial investment in equipment$600k Depreciation of equipment per year $250k Expected sale price of equipment at end of project$200k Revenue per job $12k Variable cost per job$4k Quantity of jobs per year 120 Fixed costs per year, paid at the end of each year $100k Interest expense in first year (at t=1)$16.091k Interest expense in second year (at t=2) $9.711k Tax rate 30% Government treasury bond yield 5% Bank loan debt yield 6% Levered cost of equity 12.5% Market portfolio return 10% Beta of assets 1.24 Beta of levered equity 1.5 Firm's and project's debt-to-equity ratio 25% Notes 1. The project will require an immediate purchase of$50k of inventory, which will all be sold at cost when the project ends. Current liabilities are negligible so they can be ignored.

Assumptions

• The debt-to-equity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio. Note that interest expense is different in each year.
• Thousands are represented by 'k' (kilo).
• All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
• All rates and cash flows are nominal. The inflation rate is 2% pa.
• All rates are given as effective annual rates.
• The 50% capital gains tax discount is not available since the project is undertaken by a firm, not an individual.

What is the net present value (NPV) of the project?

A firm plans to issue equity and use the cash raised to pay off its debt. No assets will be bought or sold. Ignore the costs of financial distress.

Which of the following statements is NOT correct, all things remaining equal?

A fast-growing firm is suitable for valuation using a multi-stage growth model.

It's nominal unlevered cash flow from assets ($CFFA_U$) at the end of this year (t=1) is expected to be $1 million. After that it is expected to grow at a rate of: • 12% pa for the next two years (from t=1 to 3), • 5% over the fourth year (from t=3 to 4), and • -1% forever after that (from t=4 onwards). Note that this is a negative one percent growth rate. Assume that: • The nominal WACC after tax is 9.5% pa and is not expected to change. • The nominal WACC before tax is 10% pa and is not expected to change. • The firm has a target debt-to-equity ratio that it plans to maintain. • The inflation rate is 3% pa. • All rates are given as nominal effective annual rates. What is the levered value of this fast growing firm's assets? A firm has a debt-to-assets ratio of 50%. The firm then issues a large amount of debt to raise money for new projects of similar market risk to the company's existing projects. Assume a classical tax system. Which statement is correct? A firm has a debt-to-assets ratio of 50%. The firm then issues a large amount of equity to raise money for new projects of similar systematic risk to the company's existing projects. Assume a classical tax system. Which statement is correct? A company issues a large amount of bonds to raise money for new projects of similar risk to the company's existing projects. The net present value (NPV) of the new projects is positive but small. Assume a classical tax system. Which statement is NOT correct? A firm is considering a new project of similar risk to the current risk of the firm. This project will expand its existing business. The cash flows of the project have been calculated assuming that there is no interest expense. In other words, the cash flows assume that the project is all-equity financed. In fact the firm has a target debt-to-equity ratio of 1, so the project will be financed with 50% debt and 50% equity. To find the levered value of the firm's assets, what discount rate should be applied to the project's unlevered cash flows? Assume a classical tax system. Fill in the missing words in the following sentence: All things remaining equal, as a firm's amount of debt funding falls, benefits of interest tax shields __________ and the costs of financial distress __________. You deposit money into a bank. Which of the following statements is NOT correct? You: You bought a house, primarily funded using a home loan from a bank. Which of the following statements is NOT correct? Where can a private firm's market value of equity be found? It can be sourced from the company's: There are a number of different formulas involving real and nominal returns and cash flows. Which one of the following formulas is NOT correct? All returns are effective annual rates. Note that the symbol $\approx$ means 'approximately equal to'. A home loan company advertises an interest rate of 4.5% pa, payable monthly. Which of the following statements about the interest rate is NOT correct? For an asset's price to quintuple every 5 years, what must be its effective annual capital return? Note that a stock's price quintuples when it increases from say$1 to $5. How many years will it take for an asset's price to triple (increase from say$1 to $3) if it grows by 5% pa? If someone says "my shares rose by 10% last year", what do you assume that they mean? A stock will pay you a dividend of$2 tonight if you buy it today.

Thereafter the annual dividend is expected to grow by 3% pa, so the next dividend after the $2 one tonight will be$2.06 in one year, then in two years it will be $2.1218 and so on. The stock's required return is 8% pa. What is the stock price today and what do you expect the stock price to be tomorrow, approximately? Itau Unibanco is a major listed bank in Brazil with a market capitalisation of equity equal to BRL 85.744 billion, EPS of BRL 3.96 and 2.97 billion shares on issue. Banco Bradesco is another major bank with total earnings of BRL 8.77 billion and 2.52 billion shares on issue. Estimate Banco Bradesco's current share price using a price-earnings multiples approach assuming that Itau Unibanco is a comparable firm. Note that BRL is the Brazilian Real, their currency. Figures sourced from Google Finance on the market close of the BVMF on 24/7/15. Telsa Motors advertises that its Model S electric car saves$570 per month in fuel costs. Assume that Tesla cars last for 10 years, fuel and electricity costs remain the same, and savings are made at the end of each month with the first saving of $570 in one month from now. The effective annual interest rate is 15.8%, and the effective monthly interest rate is 1.23%. What is the present value of the savings? All other things remaining equal, a project is worse if its: The following cash flows are expected: • A perpetuity of yearly payments of$30, with the first payment in 5 years (first payment at t=5, which continues every year after that forever).
• One payment of $100 in 6 years and 3 months (t=6.25). What is the NPV of the cash flows if the discount rate is 10% given as an effective annual rate? How much more can you borrow using an interest-only loan compared to a 25-year fully amortising loan if interest rates are 4% pa compounding per month and are not expected to change? If it makes it easier, assume that you can afford to pay$2,000 per month on either loan. Express your answer as a proportional increase using the following formula:

$$\text{Proportional Increase} = \dfrac{V_\text{0,interest only}}{V_\text{0,fully amortising}} - 1$$

A firm wishes to raise $50 million now. They will issue 7% pa semi-annual coupon bonds that will mature in 6 years and have a face value of$100 each. Bond yields are 5% pa, given as an APR compounding every 6 months, and the yield curve is flat.

How many bonds should the firm issue?

A firm wishes to raise $50 million now. They will issue 5% pa semi-annual coupon bonds that will mature in 3 years and have a face value of$100 each. Bond yields are 6% pa, given as an APR compounding every 6 months, and the yield curve is flat.

How many bonds should the firm issue?

A firm wishes to raise $50 million now. They will issue 5% pa semi-annual coupon bonds that will mature in 10 years and have a face value of$100 each. Bond yields are 5% pa, given as an APR compounding every 6 months, and the yield curve is flat.

How many bonds should the firm issue?

A stock is expected to pay its first dividend of $20 in 3 years (t=3), which it will continue to pay for the next nine years, so there will be ten$20 payments altogether with the last payment in year 12 (t=12).

From the thirteenth year onward, the dividend is expected to be 4% more than the previous year, forever. So the dividend in the thirteenth year (t=13) will be $20.80, then$21.632 in year 14, and so on forever. The required return of the stock is 10% pa. All rates are effective annual rates. Calculate the current (t=0) stock price.

A 4.5% fixed coupon Australian Government bond was issued at par in mid-April 2009. Coupons are paid semi-annually in arrears in mid-April and mid-October each year. The face value is $1,000. The bond will mature in mid-April 2020, so the bond had an original tenor of 11 years. Today is mid-September 2015 and similar bonds now yield 1.9% pa. What is the bond's new price? Note: there are 10 semi-annual coupon payments remaining from now (mid-September 2015) until maturity (mid-April 2020); both yields are given as APR's compounding semi-annually; assume that the yield curve was flat before the change in yields, and remained flat afterwards as well. An investor bought a 5 year government bond with a 2% pa coupon rate at par. Coupons are paid semi-annually. The face value is$100.

Calculate the bond's new price 8 months later after yields have increased to 3% pa. Note that both yields are given as APR's compounding semi-annually. Assume that the yield curve was flat before the change in yields, and remained flat afterwards as well.

Use the below information to value a levered company with constant annual perpetual cash flows from assets. The next cash flow will be generated in one year from now, so a perpetuity can be used to value this firm. Both the operating and firm free cash flows are constant (but not equal to each other).

 Data on a Levered Firm with Perpetual Cash Flows Item abbreviation Value Item full name $\text{OFCF}$ $100m Operating free cash flow $\text{FFCF or CFFA}$$112m Firm free cash flow or cash flow from assets $g$ 0% pa Growth rate of OFCF and FFCF $\text{WACC}_\text{BeforeTax}$ 7% pa Weighted average cost of capital before tax $\text{WACC}_\text{AfterTax}$ 6.25% pa Weighted average cost of capital after tax $r_\text{D}$ 5% pa Cost of debt $r_\text{EL}$ 9% pa Cost of levered equity $D/V_L$ 50% pa Debt to assets ratio, where the asset value includes tax shields $t_c$ 30% Corporate tax rate

What is the value of the levered firm including interest tax shields?

Below are some statements about loans and bonds. The first descriptive sentence is correct. But one of the second sentences about the loans' or bonds' prices is not correct. Which statement is NOT correct? Assume that interest rates are positive.

Note that coupons or interest payments are the periodic payments made throughout a bond or loan's life. The face or par value of a bond or loan is the amount paid at the end when the debt matures.

Bonds X and Y are issued by the same US company. Both bonds yield 6% pa, and they have the same face value ($100), maturity, seniority, and payment frequency. The only difference is that bond X pays coupons of 8% pa and bond Y pays coupons of 12% pa. Which of the following statements is true? There are many different ways to value a firm's assets. Which of the following will NOT give the correct market value of a levered firm's assets $(V_L)$? Assume that: • The firm is financed by listed common stock and vanilla annual fixed coupon bonds, which are both traded in a liquid market. • The bonds' yield is equal to the coupon rate, so the bonds are issued at par. The yield curve is flat and yields are not expected to change. When bonds mature they will be rolled over by issuing the same number of new bonds with the same expected yield and coupon rate, and so on forever. • Tax rates on the dividends and capital gains received by investors are equal, and capital gains tax is paid every year, even on unrealised gains regardless of when the asset is sold. • There is no re-investment of the firm's cash back into the business. All of the firm's excess cash flow is paid out as dividends so real growth is zero. • The firm operates in a mature industry with zero real growth. • All cash flows and rates in the below equations are real (not nominal) and are expected to be stable forever. Therefore the perpetuity equation with no growth is suitable for valuation. Where: $$r_\text{WACC before tax} = r_D.\frac{D}{V_L} + r_{EL}.\frac{E_L}{V_L} = \text{Weighted average cost of capital before tax}$$ $$r_\text{WACC after tax} = r_D.(1-t_c).\frac{D}{V_L} + r_{EL}.\frac{E_L}{V_L} = \text{Weighted average cost of capital after tax}$$ $$NI_L=(Rev-COGS-FC-Depr-\mathbf{IntExp}).(1-t_c) = \text{Net Income Levered}$$ $$CFFA_L=NI_L+Depr-CapEx - \varDelta NWC+\mathbf{IntExp} = \text{Cash Flow From Assets Levered}$$ $$NI_U=(Rev-COGS-FC-Depr).(1-t_c) = \text{Net Income Unlevered}$$ $$CFFA_U=NI_U+Depr-CapEx - \varDelta NWC= \text{Cash Flow From Assets Unlevered}$$ A 30 year Japanese government bond was just issued at par with a yield of 1.7% pa. The fixed coupon payments are semi-annual. The bond has a face value of$100.

Six months later, just after the first coupon is paid, the yield of the bond increases to 2% pa. What is the bond's new price?

Bonds X and Y are issued by the same company. Both bonds yield 10% pa, and they have the same face value ($100), maturity, seniority, and payment frequency. The only difference is that bond X pays coupons of 6% pa and bond Y pays coupons of 8% pa. Which of the following statements is true? Which one of the following bonds is trading at a premium? An investor bought two fixed-coupon bonds issued by the same company, a zero-coupon bond and a 7% pa semi-annual coupon bond. Both bonds have a face value of$1,000, mature in 10 years, and had a yield at the time of purchase of 8% pa.

A few years later, yields fell to 6% pa. Which of the following statements is correct? Note that a capital gain is an increase in price.

Convert a 10% continuously compounded annual rate $(r_\text{cc annual})$ into an effective annual rate $(r_\text{eff annual})$. The equivalent effective annual rate is:

Which of the following interest rate quotes is NOT equivalent to a 10% effective annual rate of return? Assume that each year has 12 months, each month has 30 days, each day has 24 hours, each hour has 60 minutes and each minute has 60 seconds. APR stands for Annualised Percentage Rate.

A continuously compounded monthly return of 1% $(r_\text{cc monthly})$ is equivalent to a continuously compounded annual return $(r_\text{cc annual})$ of:

An effective monthly return of 1% $(r_\text{eff monthly})$ is equivalent to an effective annual return $(r_\text{eff annual})$ of:

Which of the following quantities is commonly assumed to be normally distributed?

If a stock's future expected effective annual returns are log-normally distributed, what will be bigger, the stock's or effective annual return? Or would you expect them to be ?

The symbol $\text{GDR}_{0\rightarrow 1}$ represents a stock's gross discrete return per annum over the first year. $\text{GDR}_{0\rightarrow 1} = P_1/P_0$. The subscript indicates the time period that the return is mentioned over. So for example, $\text{AAGDR}_{1 \rightarrow 3}$ is the arithmetic average GDR measured over the two year period from years 1 to 3, but it is expressed as a per annum rate.

Which of the below statements about the arithmetic and geometric average GDR is NOT correct?

Fred owns some Commonwealth Bank (CBA) shares. He has calculated CBA’s monthly returns for each month in the past 20 years using this formula:

$$r_\text{t monthly}=\ln⁡ \left( \dfrac{P_t}{P_{t-1}} \right)$$

He then took the arithmetic average and found it to be 1% per month using this formula:

$$\bar{r}_\text{monthly}= \dfrac{ \displaystyle\sum\limits_{t=1}^T{\left( r_\text{t monthly} \right)} }{T} =0.01=1\% \text{ per month}$$

He also found the standard deviation of these monthly returns which was 5% per month:

$$\sigma_\text{monthly} = \dfrac{ \displaystyle\sum\limits_{t=1}^T{\left( \left( r_\text{t monthly} - \bar{r}_\text{monthly} \right)^2 \right)} }{T} =0.05=5\%\text{ per month}$$

Which of the below statements about Fred’s CBA shares is NOT correct? Assume that the past historical average return is the true population average of future expected returns.

Here is a table of stock prices and returns. Which of the statements below the table is NOT correct?

 Price and Return Population Statistics Time Prices LGDR GDR NDR 0 100 1 50 -0.6931 0.5 -0.5 2 100 0.6931 2 1 Arithmetic average 0 1.25 0.25 Arithmetic standard deviation 0.9802 1.0607 1.0607

The current gold price is $700, gold storage costs are 2% pa and the risk free rate is 10% pa, both with continuous compounding. What should be the 3 year gold futures price? A$100 stock has a continuously compounded expected total return of 10% pa. Its dividend yield is 2% pa with continuous compounding. What do you expect its price to be in one year?

A $100 stock has a continuously compounded expected total return of 10% pa. Its dividend yield is 2% pa with continuous compounding. What do you expect its price to be in 2.5 years? A bank quotes an interest rate of 6% pa with quarterly compounding. Note that another way of stating this rate is that it is an annual percentage rate (APR) compounding discretely every 3 months. Which of the following statements about this rate is NOT correct? All percentages are given to 6 decimal places. The equivalent: Convert a 10% effective annual rate $(r_\text{eff annual})$ into a continuously compounded annual rate $(r_\text{cc annual})$. The equivalent continuously compounded annual rate is: A continuously compounded semi-annual return of 5% $(r_\text{cc 6mth})$ is equivalent to a continuously compounded annual return $(r_\text{cc annual})$ of: A stock has an arithmetic average continuously compounded return (AALGDR) of 10% pa, a standard deviation of continuously compounded returns (SDLGDR) of 80% pa and current stock price of$1. Assume that stock prices are log-normally distributed.

In one year, what do you expect the mean and median prices to be? The answer options are given in the same order.

A stock has an arithmetic average continuously compounded return (AALGDR) of 10% pa, a standard deviation of continuously compounded returns (SDLGDR) of 80% pa and current stock price of $1. Assume that stock prices are log-normally distributed. In 5 years, what do you expect the mean and median prices to be? The answer options are given in the same order. Here is a table of stock prices and returns. Which of the statements below the table is NOT correct?  Price and Return Population Statistics Time Prices LGDR GDR NDR 0 100 1 99 -0.010050 0.990000 -0.010000 2 180.40 0.600057 1.822222 0.822222 3 112.73 0.470181 0.624889 0.375111 Arithmetic average 0.0399 1.1457 0.1457 Arithmetic standard deviation 0.4384 0.5011 0.5011 Fred owns some BHP shares. He has calculated BHP’s monthly returns for each month in the past 30 years using this formula: $$r_\text{t monthly}=\ln⁡ \left( \dfrac{P_t}{P_{t-1}} \right)$$ He then took the arithmetic average and found it to be 0.8% per month using this formula: $$\bar{r}_\text{monthly}= \dfrac{ \displaystyle\sum\limits_{t=1}^T{\left( r_\text{t monthly} \right)} }{T} =0.008=0.8\% \text{ per month}$$ He also found the standard deviation of these monthly returns which was 15% per month: $$\sigma_\text{monthly} = \dfrac{ \displaystyle\sum\limits_{t=1}^T{\left( \left( r_\text{t monthly} - \bar{r}_\text{monthly} \right)^2 \right)} }{T} =0.15=15\%\text{ per month}$$ Assume that the past historical average return is the true population average of future expected returns and the stock's returns calculated above $(r_\text{t monthly})$ are normally distributed. Which of the below statements about Fred’s BHP shares is NOT correct? In 2014 the median starting salaries of male and female Australian bachelor degree accounting graduates aged less than 25 years in their first full-time industry job was$50,000 before tax, according to Graduate Careers Australia. See page 9 of this report. Personal income tax rates published by the Australian Tax Office are reproduced for the 2014-2015 financial year in the table below.

Taxable income Tax on this income
0 – $18,200 Nil$18,201 – $37,000 19c for each$1 over $18,200$37,001 – $80,000$3,572 plus 32.5c for each $1 over$37,000
$80,001 –$180,000 $17,547 plus 37c for each$1 over $80,000$180,001 and over $54,547 plus 45c for each$1 over $180,000 The above rates do not include the Medicare levy of 2%. Exclude the Medicare levy from your calculations How much personal income tax would you have to pay per year if you earned$50,000 per annum before-tax?

A firm pays a fully franked cash dividend of $100 to one of its Australian shareholders who has a personal marginal tax rate of 15%. The corporate tax rate is 30%. What will be the shareholder's personal tax payable due to the dividend payment? Due to floods overseas, there is a cut in the supply of the mineral iron ore and its price increases dramatically. An Australian iron ore mining company therefore expects a large but temporary increase in its profit and cash flows. The mining company does not have any positive NPV projects to begin, so what should it do? Select the most correct answer. A pharmaceutical firm has just discovered a valuable new drug. So far the news has been kept a secret. The net present value of making and commercialising the drug is$200 million, but $600 million of bonds will need to be issued to fund the project and buy the necessary plant and equipment. The firm will release the news of the discovery and bond raising to shareholders simultaneously in the same announcement. The bonds will be issued shortly after. Once the announcement is made and the bonds are issued, what is the expected increase in the value of the firm's assets (ΔV), market capitalisation of debt (ΔD) and market cap of equity (ΔE)? The triangle symbol is the Greek letter capital delta which means change or increase in mathematics. Ignore the benefit of interest tax shields from having more debt. Remember: $ΔV = ΔD+ΔE$ A mining firm has just discovered a new mine. So far the news has been kept a secret. The net present value of digging the mine and selling the minerals is$250 million, but $500 million of new equity and$300 million of new bonds will need to be issued to fund the project and buy the necessary plant and equipment.

The firm will release the news of the discovery and equity and bond raising to shareholders simultaneously in the same announcement. The shares and bonds will be issued shortly after.

Once the announcement is made and the new shares and bonds are issued, what is the expected increase in the value of the firm's assets $(\Delta V)$, market capitalisation of debt $(\Delta D)$ and market cap of equity $(\Delta E)$? Assume that markets are semi-strong form efficient.

The triangle symbol $\Delta$ is the Greek letter capital delta which means change or increase in mathematics.

Ignore the benefit of interest tax shields from having more debt.

Remember: $\Delta V = \Delta D+ \Delta E$

A young lady is trying to decide if she should attend university or not.

The young lady's parents say that she must attend university because otherwise all of her hard work studying and attending school during her childhood was a waste.

What's the correct way to classify this item from a capital budgeting perspective when trying to decide whether to attend university?

The hard work studying at school in her childhood should be classified as:

The 'time value of money' is most closely related to which of the following concepts?

Question 513  stock split, reverse stock split, stock dividend, bonus issue, rights issue

Which of the following statements is NOT correct?

A company conducts a 4 for 3 stock split. What is the percentage change in the stock price and the number of shares outstanding? The answers are given in the same order.

A company's share price fell by 20% and its number of shares rose by 25%. Assume that there are no taxes, no signalling effects and no transaction costs.

Which one of the following corporate events may have happened?

In mid 2009 the listed mining company Rio Tinto announced a 21-for-40 renounceable rights issue. Below is the chronology of events:

• 04/06/2009. Share price opens at $69.00 and closes at$66.90.

• 05/06/2009. 21-for-40 rights issue announced at a subscription price of $28.29. • 16/06/2009. Last day that shares trade cum-rights. Share price opens at$76.40 and closes at $75.50. • 17/06/2009. Shares trade ex-rights. Rights trading commences. All things remaining equal, what would you expect Rio Tinto's stock price to open at on the first day that it trades ex-rights (17/6/2009)? Ignore the time value of money since time is negligibly short. Also ignore taxes. A fairly priced unlevered firm plans to pay a dividend of$1 next year (t=1) which is expected to grow by 3% pa every year after that. The firm's required return on equity is 8% pa.

The firm is thinking about reducing its future dividend payments by 10% so that it can use the extra cash to invest in more projects which are expected to return 8% pa, and have the same risk as the existing projects. Therefore, next year's dividend will be $0.90. No new equity or debt will be issued to fund the new projects, they'll all be funded by the cut in dividends. What will be the stock's new annual capital return (proportional increase in price per year) if the change in payout policy goes ahead? Assume that payout policy is irrelevant to firm value (so there's no signalling effects) and that all rates are effective annual rates. A share was bought for$20 (at t=0) and paid its annual dividend of $3 one year later (at t=1). Just after the dividend was paid, the share price was$16 (at t=1). What was the total return, capital return and income return? Calculate your answers as effective annual rates.

The choices are given in the same order: $r_\text{total},r_\text{capital},r_\text{income}$.

Find the cash flow from assets (CFFA) of the following project.

 Project Data Project life 2 years Initial investment in equipment $8m Depreciation of equipment per year for tax purposes$3m Unit sales per year 10m Sale price per unit $9 Variable cost per unit$4 Fixed costs per year, paid at the end of each year $2m Tax rate 30% Note 1: Due to the project, the firm will have to purchase$40m of inventory initially (at t=0). Half of this inventory will be sold at t=1 and the other half at t=2.

Note 2: The equipment will have a book value of $2m at the end of the project for tax purposes. However, the equipment is expected to fetch$1m when it is sold. Assume that the full capital loss is tax-deductible and taxed at the full corporate tax rate.

Note 3: The project will be fully funded by equity which investors will expect to pay dividends totaling $10m at the end of each year. Find the project's CFFA at time zero, one and two. Answers are given in millions of dollars ($m).

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Note that a fair gamble is a bet that has an expected value of zero, such as paying $0.50 to win$1 in a coin flip with heads or nothing if it lands tails. Fairly priced insurance is when the expected present value of the insurance premiums is equal to the expected loss from the disaster that the insurance protects against, such as the cost of rebuilding a home after a catastrophic fire.

Which of the following statements is NOT correct?

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Which of the following statements is NOT correct?

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Each person has $500 of initial wealth. A coin toss game is offered to each person at a casino where the player can win or lose$500. Each player can flip a coin and if they flip heads, they receive $500. If they flip tails then they will lose$500. Which of the following statements is NOT correct?

Which of the below statements about utility is NOT generally accepted by economists? Most people are thought to:

Mr Blue, Miss Red and Mrs Green are people with different utility functions. Which of the statements about the 3 utility functions is NOT correct?

Mr Blue, Miss Red and Mrs Green are people with different utility functions. Which of the statements about the 3 utility functions is NOT correct?

Mr Blue, Miss Red and Mrs Green are people with different utility functions. Which of the statements about the 3 utility functions is NOT correct?

Mr Blue, Miss Red and Mrs Green are people with different utility functions. Which of the statements about the 3 utility functions is NOT correct?

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Each person has $50 of initial wealth. A coin toss game is offered to each person at a casino where the player can win or lose$50. Each player can flip a coin and if they flip heads, they receive $50. If they flip tails then they will lose$50. Which of the following statements is NOT correct?

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Each person has $50 of initial wealth. A coin toss game is offered to each person at a casino where the player can win or lose$50. Each player can flip a coin and if they flip heads, they receive $50. If they flip tails then they will lose$50. Which of the following statements is NOT correct?

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Each person has $50 of initial wealth. A coin toss game is offered to each person at a casino where the player can win or lose$50. Each player can flip a coin and if they flip heads, they receive $50. If they flip tails then they will lose$50. Which of the following statements is NOT correct?

Mr Blue, Miss Red and Mrs Green are people with different utility functions.

Each person has $50 of initial wealth. A coin toss game is offered to each person at a casino where the player can win or lose$50. Each player can flip a coin and if they flip heads, they receive $50. If they flip tails then they will lose$50. Which of the following statements is NOT correct?

Two years ago Fred bought a house for $300,000. Now it's worth$500,000, based on recent similar sales in the area.

Fred's residential property has an expected total return of 8% pa.

He rents his house out for $2,000 per month, paid in advance. Every 12 months he plans to increase the rental payments. The present value of 12 months of rental payments is$23,173.86.

The future value of 12 months of rental payments one year ahead is $25,027.77. What is the expected annual growth rate of the rental payments? In other words, by what percentage increase will Fred have to raise the monthly rent by each year to sustain the expected annual total return of 8%? The sayings "Don't cry over spilt milk", "Don't regret the things that you can't change" and "What's done is done" are most closely related to which financial concept? Question 768 accounting terminology, book and market values, no explanation Accountants and finance professionals have lots of names for the same things which can be quite confusing. Which of the following groups of items are NOT synonyms? "Buy low, sell high" is a well-known saying. It suggests that investors should buy low then sell high, in that order. How would you re-phrase that saying to describe short selling? Which of the following statements is NOT correct? Assume that all events are a surprise and that all other things remain equal. So for example, don't assume that just because a company's dividends and profit rise that its required return will also rise, assume the required return stays the same. You deposit money into a bank account. Which of the following statements about this deposit is NOT correct? An Australian company just issued two bonds: • A 6-month zero coupon bond at a yield of 6% pa, and • A 12 month zero coupon bond at a yield of 7% pa. What is the company's forward rate from 6 to 12 months? Give your answer as an APR compounding every 6 months, which is how the above bond yields are quoted. A European company just issued two bonds, a • 1 year zero coupon bond at a yield of 8% pa, and a • 2 year zero coupon bond at a yield of 10% pa. What is the company's forward rate over the second year (from t=1 to t=2)? Give your answer as an effective annual rate, which is how the above bond yields are quoted. Estimate the Chinese bank ICBC's share price using a backward-looking price earnings (PE) multiples approach with the following assumptions and figures only. Note that the renminbi (RMB) is the Chinese currency, also known as the yuan (CNY). • The 4 major Chinese banks ICBC, China Construction Bank (CCB), Bank of China (BOC) and Agricultural Bank of China (ABC) are comparable companies; • ICBC 's historical earnings per share (EPS) is RMB 0.74; • CCB's backward-looking PE ratio is 4.59; • BOC 's backward-looking PE ratio is 4.78; • ABC's backward-looking PE ratio is also 4.78; Note: Figures sourced from Google Finance on 25 March 2014. Share prices are from the Shanghai stock exchange. A firm issues debt and uses the funds to buy back equity. Assume that there are no costs of financial distress or transactions costs. Which of the following statements about interest tax shields is NOT correct? Below is a graph of 3 peoples’ utility functions, Mr Blue (U=W^(1/2) ), Miss Red (U=W/10) and Mrs Green (U=W^2/1000). Assume that each of them currently have$50 of wealth.

Which of the following statements about them is NOT correct?

(a) Mr Blue would prefer to invest his wealth in a well diversified portfolio of stocks rather than a single stock, assuming that all stocks had the same total risk and return.

A managed fund charges fees based on the amount of money that you keep with them. The fee is 2% of the start-of-year amount, but it is paid at the end of every year.

This fee is charged regardless of whether the fund makes gains or losses on your money.

The fund offers to invest your money in shares which have an expected return of 10% pa before fees.

You are thinking of investing $100,000 in the fund and keeping it there for 40 years when you plan to retire. What is the Net Present Value (NPV) of investing your money in the fund? Note that the question is not asking how much money you will have in 40 years, it is asking: what is the NPV of investing in the fund? Assume that: • The fund has no private information. • Markets are weak and semi-strong form efficient. • The fund's transaction costs are negligible. • The cost and trouble of investing your money in shares by yourself, without the managed fund, is negligible. A residential real estate investor believes that house prices will grow at a rate of 5% pa and that rents will grow by 2% pa forever. All rates are given as nominal effective annual returns. Assume that: • His forecast is true. • Real estate is and always will be fairly priced and the capital asset pricing model (CAPM) is true. • Ignore all costs such as taxes, agent fees, maintenance and so on. • All rental income cash flow is paid out to the owner, so there is no re-investment and therefore no additions or improvements made to the property. • The non-monetary benefits of owning real estate and renting remain constant. Which one of the following statements is NOT correct? Over time: Use the below information to value a levered company with constant annual perpetual cash flows from assets. The next cash flow will be generated in one year from now, so a perpetuity can be used to value this firm. Both the operating and firm free cash flows are constant (but not equal to each other).  Data on a Levered Firm with Perpetual Cash Flows Item abbreviation Value Item full name $\text{OFCF}$$48.5m Operating free cash flow $\text{FFCF or CFFA}$ $50m Firm free cash flow or cash flow from assets $g$ 0% pa Growth rate of OFCF and FFCF $\text{WACC}_\text{BeforeTax}$ 10% pa Weighted average cost of capital before tax $\text{WACC}_\text{AfterTax}$ 9.7% pa Weighted average cost of capital after tax $r_\text{D}$ 5% pa Cost of debt $r_\text{EL}$ 11.25% pa Cost of levered equity $D/V_L$ 20% pa Debt to assets ratio, where the asset value includes tax shields $t_c$ 30% Corporate tax rate What is the value of the levered firm including interest tax shields? One year ago you bought a$1,000,000 house partly funded using a mortgage loan. The loan size was $800,000 and the other$200,000 was your wealth or 'equity' in the house asset.

The interest rate on the home loan was 4% pa.

Over the year, the house produced a net rental yield of 2% pa and a capital gain of 2.5% pa.

Assuming that all cash flows (interest payments and net rental payments) were paid and received at the end of the year, and all rates are given as effective annual rates, what was the total return on your wealth over the past year?

Hint: Remember that wealth in this context is your equity (E) in the house asset (V = D+E) which is funded by the loan (D) and your deposit or equity (E).

The market's expected total return is 10% pa and the risk free rate is 5% pa, both given as effective annual rates.

A stock has a beta of 0.5.

In the last 5 minutes, the federal government unexpectedly raised taxes. Over this time the share market fell by 3%. The risk free rate was unchanged.

What do you think was the stock's historical return over the last 5 minutes, given as an effective 5 minute rate?

A stock has a beta of 1.5. The market's expected total return is 10% pa and the risk free rate is 5% pa, both given as effective annual rates.

In the last 5 minutes, bad economic news was released showing a higher chance of recession. Over this time the share market fell by 1%. The risk free rate was unchanged.

What do you think was the stock's historical return over the last 5 minutes, given as an effective 5 minute rate?

A stock has a beta of 1.5. The market's expected total return is 10% pa and the risk free rate is 5% pa, both given as effective annual rates.

Over the last year, bad economic news was released showing a higher chance of recession. Over this time the share market fell by 1%. So $r_{m} = (P_{0} - P_{-1})/P_{-1} = -0.01$, where the current time is zero and one year ago is time -1. The risk free rate was unchanged.

What do you think was the stock's historical return over the last year, given as an effective annual rate?

A firm changes its capital structure by issuing a large amount of equity and using the funds to repay debt. Its assets are unchanged. Ignore interest tax shields.

According to the Capital Asset Pricing Model (CAPM), which statement is correct?

The CAPM can be used to find a business's expected opportunity cost of capital:

$$r_i=r_f+β_i (r_m-r_f)$$

What should be used as the risk free rate $r_f$?

Which of the following statements about the weighted average cost of capital (WACC) is NOT correct?

 Project Data Project life 1 year Initial investment in equipment $8m Depreciation of equipment per year$8m Expected sale price of equipment at end of project 0 Unit sales per year 4m Sale price per unit $10 Variable cost per unit$5 Fixed costs per year, paid at the end of each year $2m Interest expense in first year (at t=1)$0.562m Corporate tax rate 30% Government treasury bond yield 5% Bank loan debt yield 9% Market portfolio return 10% Covariance of levered equity returns with market 0.32 Variance of market portfolio returns 0.16 Firm's and project's debt-to-equity ratio 50%

Notes

1. Due to the project, current assets will increase by $6m now (t=0) and fall by$6m at the end (t=1). Current liabilities will not be affected.

Assumptions

• The debt-to-equity ratio will be kept constant throughout the life of the project. The amount of interest expense at the end of each period has been correctly calculated to maintain this constant debt-to-equity ratio.
• Millions are represented by 'm'.
• All cash flows occur at the start or end of the year as appropriate, not in the middle or throughout the year.
• All rates and cash flows are real. The inflation rate is 2% pa. All rates are given as effective annual rates.
• The project is undertaken by a firm, not an individual.

What is the net present value (NPV) of the project?

The capital market line (CML) is shown in the graph below. The total standard deviation is denoted by σ and the expected return is μ. Assume that markets are efficient so all assets are fairly priced.

Which of the below statements is NOT correct?

A company advertises an investment costing $1,000 which they say is under priced. They say that it has an expected total return of 15% pa, but a required return of only 10% pa. Of the 15% pa total expected return, the dividend yield is expected to be 4% pa and the capital yield 11% pa. Assume that the company's statements are correct. What is the NPV of buying the investment if the 15% total return lasts for the next 100 years (t=0 to 100), then reverts to 10% after that time? Also, what is the NPV of the investment if the 15% return lasts forever? In both cases, assume that the required return of 10% remains constant, the dividends can only be re-invested at 10% pa and all returns are given as effective annual rates. The answer choices below are given in the same order (15% for 100 years, and 15% forever): A stock's required total return will decrease when its: To value a business's assets, the free cash flow of the firm (FCFF, also called CFFA) needs to be calculated. This requires figures from the firm's income statement and balance sheet. For what figures is the income statement needed? Note that the income statement is sometimes also called the profit and loss, P&L, or statement of financial performance. A home loan company advertises an interest rate of 9% pa, payable monthly. Which of the following statements about the interest rate is NOT correct? All rates are given with an accuracy of 4 decimal places. A firm has a debt-to-assets ratio of 20%. What is its debt-to-equity ratio? What is the present value of real payments of$100 every year forever, with the first payment in one year? The nominal discount rate is 7% pa and the inflation rate is 4% pa.

A company conducts a 10 for 3 stock split. What is the percentage increase in the stock price and the number of shares outstanding? The answers are given in the same order.

Question 668  buy and hold, market efficiency, idiom

A quote from the famous investor Warren Buffet: "Much success can be attributed to inactivity. Most investors cannot resist the temptation to constantly buy and sell."

Buffet is referring to the buy-and-hold strategy which is to buy and never sell shares. Which of the following is a disadvantage of a buy-and-hold strategy? Assume that share markets are semi-strong form efficient. Which of the following is NOT an advantage of the strict buy-and-hold strategy? A disadvantage of the buy-and-hold strategy is that it reduces:

Which of the following is NOT a valid method for estimating the beta of a company's stock? Assume that markets are efficient, a long history of past data is available, the stock possesses idiosyncratic and market risk. The variances and standard deviations below denote total risks.

A stock's required total return will increase when its:

Who owns a company's shares? The:

An economy has only two investable assets: stocks and cash.

Stocks had a historical nominal average total return of negative two percent per annum (-2% pa) over the last 20 years. Stocks are liquid and actively traded. Stock returns are variable, they have risk.

Cash is riskless and has a nominal constant return of zero percent per annum (0% pa), which it had in the past and will have in the future. Cash can be kept safely at zero cost. Cash can be converted into shares and vice versa at zero cost.

The nominal total return of the shares over the next year is expected to be:

The efficient markets hypothesis (EMH) and no-arbitrage pricing theory are most closely related to which of the following concepts?

Which of the following statements about Australian franking credits is NOT correct? Franking credits:

Question 625  dividend re-investment plan, capital raising

Which of the following statements about dividend re-investment plans (DRP's) is NOT correct?

Assets A, B, M and $r_f$ are shown on the graphs above. Asset M is the market portfolio and $r_f$ is the risk free yield on government bonds. Which of the below statements is NOT correct?

Assets A, B, M and $r_f$ are shown on the graphs above. Asset M is the market portfolio and $r_f$ is the risk free yield on government bonds. Assume that investors can borrow and lend at the risk free rate. Which of the below statements is NOT correct?

Which of the following statements about yield curves is NOT correct?

A company advertises an investment costing $1,000 which they say is underpriced. They say that it has an expected total return of 15% pa, but a required return of only 10% pa. Of the 15% pa total expected return, the dividend yield is expected to always be 7% pa and rest is the capital yield. Assuming that the company's statements are correct, what is the NPV of buying the investment if the 15% total return lasts for the next 100 years (t=0 to 100), then reverts to 10% after that time? Also, what is the NPV of the investment if the 15% return lasts forever? In both cases, assume that the required return of 10% remains constant, the dividends can only be re-invested at 10% pa and all returns are given as effective annual rates. The answer choices below are given in the same order (15% for 100 years, and 15% forever): You deposit cash into your bank account. Does the deposit account represent a debt or to you? A business project is expected to cost$100 now (t=0), then pay $10 at the end of the third (t=3), fourth, fifth and sixth years, and then grow by 5% pa every year forever. So the cash flow will be$10.5 at the end of the seventh year (t=7), then $11.025 at the end of the eighth year (t=8) and so on perpetually. The total required return is 10℅ pa. Which of the following formulas will NOT give the correct net present value of the project? Most listed Australian companies pay dividends twice per year, the 'interim' and 'final' dividends, which are roughly 6 months apart. You are an equities analyst trying to value the company BHP. You decide to use the Dividend Discount Model (DDM) as a starting point, so you study BHP's dividend history and you find that BHP tends to pay the same interim and final dividend each year, and that both grow by the same rate. You expect BHP will pay a$0.55 interim dividend in six months and a $0.55 final dividend in one year. You expect each to grow by 4% next year and forever, so the interim and final dividends next year will be$0.572 each, and so on in perpetuity.

Assume BHP's cost of equity is 8% pa. All rates are quoted as nominal effective rates. The dividends are nominal cash flows and the inflation rate is 2.5% pa.

What is the current price of a BHP share?

A firm pays a fully franked cash dividend of $70 to one of its Australian shareholders who has a personal marginal tax rate of 45%. The corporate tax rate is 30%. What will be the shareholder's personal tax payable due to the dividend payment? A risk manager has identified that their hedge fund’s continuously compounded portfolio returns are normally distributed with a mean of 10% pa and a standard deviation of 30% pa. The hedge fund’s portfolio is currently valued at$100 million. Assume that there is no estimation error in these figures and that the normal cumulative density function at 1.644853627 is 95%.

Which of the following statements is NOT correct? All answers are rounded to the nearest dollar.

Which of the following statements about probability distributions is NOT correct?

A graph of assets’ expected returns $(\mu)$ versus standard deviations $(\sigma)$ is given in the below diagram.

Each letter corresponds to a separate coloured area. The portfolios at the boundary of the areas, on the black lines, are excluded from each area. Assume that all assets represented in this graph are fairly priced, and that all risky assets can be short-sold.

Which statement(s) are correct?

(i) All stocks that plot on the Security Market Line (SML) are fairly priced.

(ii) All stocks that plot above the Security Market Line (SML) are overpriced.

(iii) All fairly priced stocks that plot on the Capital Market Line (CML) have zero idiosyncratic risk.

Select the most correct response:

Government bonds currently have a return of 5% pa. A stock has an expected return of 6% pa and the market return is 7% pa. What is the beta of the stock?

Government bonds currently have a return of 5%. A stock has a beta of 2 and the market return is 7%. What is the expected return of the stock?

The security market line (SML) shows the relationship between beta and expected return.

Investment projects that plot above the SML would have:

The security market line (SML) shows the relationship between beta and expected return.

Investment projects that plot on the SML would have:

Examine the following graph which shows stocks' betas $(\beta)$ and expected returns $(\mu)$:

Assume that the CAPM holds and that future expectations of stocks' returns and betas are correctly measured. Which statement is NOT correct?

An effective semi-annual return of 5% $(r_\text{eff 6mth})$ is equivalent to an effective annual return $(r_\text{eff annual})$ of:

If a variable, say X, is normally distributed with mean $\mu$ and variance $\sigma^2$ then mathematicians write $X \sim \mathcal{N}(\mu, \sigma^2)$.

If a variable, say Y, is log-normally distributed and the underlying normal distribution has mean $\mu$ and variance $\sigma^2$ then mathematicians write $Y \sim \mathbf{ln} \mathcal{N}(\mu, \sigma^2)$.

The below three graphs show probability density functions (PDF) of three different random variables Red, Green and Blue.

Select the most correct statement:

The below three graphs show probability density functions (PDF) of three different random variables Red, Green and Blue. Let $P_1$ be the unknown price of a stock in one year. $P_1$ is a random variable. Let $P_0 = 1$, so the share price now is $1. This one dollar is a constant, it is not a variable. Which of the below statements is NOT correct? Financial practitioners commonly assume that the shape of the PDF represented in the colour: If a stock's future expected continuously compounded annual returns are normally distributed, what will be bigger, the stock's or continuously compounded annual return? Or would you expect them to be ? If a stock's expected future prices are log-normally distributed, what will be bigger, the stock's or future price? Or would you expect them to be ? Use the below information to value a levered company with annual perpetual cash flows from assets that grow. The next cash flow will be generated in one year from now. Note that ‘k’ means kilo or 1,000. So the$30k is $30,000.  Data on a Levered Firm with Perpetual Cash Flows Item abbreviation Value Item full name $\text{OFCF}$$30k Operating free cash flow $g$ 1.5% pa Growth rate of OFCF $r_\text{D}$ 4% pa Cost of debt $r_\text{EL}$ 16.3% pa Cost of levered equity $D/V_L$ 80% pa Debt to assets ratio, where the asset value includes tax shields $t_c$ 30% Corporate tax rate $n_\text{shares}$ 100k Number of shares

Which of the following statements is NOT correct?

A firm is about to conduct a 2-for-7 rights issue with a subscription price of $10 per share. They haven’t announced the capital raising to the market yet and the share price is currently$13 per share. Assume that every shareholder will exercise their rights, the cash raised will simply be put in the bank, and the rights issue is completed so quickly that the time value of money can be ignored. Disregard signalling, taxes and agency-related effects.

Which of the following statements about the rights issue is NOT correct? After the rights issue is completed:

A trader buys one crude oil European style call option contract on the CME expiring in one year with an exercise price of $44 per barrel for a price of$6.64. The crude oil spot price is \$40.33. If the trader doesn’t close out her contract before maturity, then at maturity she will have the:

Gross discrete returns in different states of the world are presented in the table below. A gross discrete return is defined as $P_1/P_0$, where $P_0$ is the price now and $P_1$ is the expected price in the future. An investor can purchase only a single asset, A, B, C or D. Assume that a portfolio of assets is not possible.

 Gross Discrete Returns In Different States of the World Investment World states (probability) asset Good (50%) Bad (50%) A 2 0.5 B 1.1 0.9 C 1.1 0.95 D 1.01 1.01

Which of the following statements about the different assets is NOT correct? Asset:

Suppose the yield curve in the USA and Germany is flat and the:

• USD federal funds rate at the Federal Reserve is 1% pa;
• EUR deposit facility at the European Central Bank is -0.4% pa (note the negative sign);
• Spot EUR exchange rate is 1 USD per EUR;
• One year forward EUR exchange rate is 1.011 USD per EUR.

You suspect that there’s an arbitrage opportunity. Which one of the following statements about the potential arbitrage opportunity is NOT correct?

Which of the following statements about Macaulay duration is NOT correct? The Macaulay duration:

A fixed coupon bond’s modified duration is 20 years, and yields are currently 10% pa compounded annually. Which of the following statements about the bond is NOT correct?

Which of the following statements is NOT correct? Fairly-priced assets should:

The Capital Asset Pricing Model (CAPM) and the Single Index Model (SIM) are single factor models whose only risk factor is the market portfolio’s return. Say a Solar electricity generator company and a Beach bathing chair renting company are influenced by two factors, the market portfolio return and cloud cover in the sky. When it's sunny and not cloudy, both the Solar and Beach companies’ stock prices do well. When there’s dense cloud cover and no sun, both do poorly. Assume that cloud coverage risk is a systematic risk that cannot be diversified and that cloud cover has zero correlation with the market portfolio’s returns.

Which of the following statements about these two stocks is NOT correct?

The CAPM and SIM:

Who was the first theorist to endorse the maximisiation of the geometric average gross discrete return for investors (not gamblers) since it gave a "...portfolio that has a greater probability of being as valuable or more valuable than any other significantly different portfolio at the end of n years, n being large"?

(a) Daniel Bernoulli.